вторник, 29 мая 2018 г.

aujeszky_virus_hund

Der BARF-Blog

Dieses Blog durchsuchen

Die BARF „Todsünden“ – was sollte man nie tun?

  • Link abrufen
  • Facebook
  • Twitter
  • Pinterest
  • Google+
  • E-Mail
  • Andere Apps

1. Nie gekochte Knochen verfüttern - Lebensgefahr!

2. Nicht einseitig füttern - Mangelernährung!

3. Nicht zu energiearm füttern – Gesundheitsgefahr!

4. Kein Rohes Schweinefleisch füttern – Lebensgefahr!

5. Kein Schilddrüsengewebe (Kehlkopf oder Kopffleisch-Mixe) füttern – Gesundheitsgefahr!

6. Jodhaltige Algen richtig dosieren – Fehlversorgung & Gesundheitsgefahr!

7. Zusätze in Maßen füttern - Fehlversorgung & Gesundheitsgefahr!

8. Die richtigen Öle einsetzen - Gesundheitsgefahr!

9. Faserstoffe nicht vergessen - Gesundheitsgefahr!

10. Nicht unverhältnismäßig füttern – Mangelernährung / Überversorgung!

11. Nicht zu schnell auf BARF umstellen - Gesundheitsgefahr!

12. Wenig thiaminasehaltigen, rohen Fisch füttern – Gesundheitsgefahr!

13. Fleisch nie unter Luftabschluss auftauen lassen – Lebensgefahr!

14. Giftige Lebensmittel meiden - Lebensgefahr!

  • Link abrufen
  • Facebook
  • Twitter
  • Pinterest
  • Google+
  • E-Mail
  • Andere Apps

Kommentare

Ich lerne auf dieser Seite immer mehr. Vielen Dank für diese Ausführungen!

In 3 Wochen zieht ein Mini-Aussie bei uns ein. Ohne diese Seite hätte ich mich nicht an das Thema BARF rangetraut. Ganz großes Lob!

Bin grad am Erstellen eines Futterplans. Wie sieht es bei der Fütterung von Hühner- oder Putenhälsen aus in Bezug auf die Schilddrüsenhormone? Oder sollte man besser auf Rinder- oder Kalbsbrustknochen ausweichen?

Bei Vögeln liegt die Schilddrüse viel weiter unten als bei Säugetieren, eher in Richtung Brust. Von daher sollte man bei Hühner- und Putenhälsen damit kein Problem haben. Auch die Menge ist natürlich eine ganz andere als beim Rind.

Dann bin ich ja beruhigt. Danke für die Info.

hallo, meine kleine war jetzt 3 monate Scheinschwanger (ich weiß viel zu lange haben es aber auch medikamentös behandelt) sie ist ein super fresser aber schon während der läufigkeit fing sie an zu mäkeln. zum schluss fraß sie mir gar nichts mehr außer pansen udn hungerte bis zu 5 tage Oo. jetzt hat sie vorher schon ungerne leber und nieren gefressen und dann gar nicht mehr. egal was ich versucht habe. ist es denn jetzt ganz schlimm dass sie im grunde über 3 monate keine leber mehr bekommen hat und auch die nieren knapp 3 monate gefehlt haben? seit ca. 2 wochen frisst sie wieder und soger vor ein paar tagen die niere wieder (zwar nur gewolft unters futter gemischt aber besser als gar nicht) jetzt will ich ihr mal wieder leber geben (lertran hab ich noch nie gegeben da es hieß im wachstum sei es nicht gut für den hund)

woran merke ich dass sie evt einen magel hat?

super vielen Dank. Gut untergemischt Frisst sie jetzt wieder alles bin daher sehr froh darüber. habe gehört dass man mit wenig Futter während der Hitze evt. einer scheinschwangerschaft vorbeugen kann, auch habe ich Probolies da die ich auch frühzeitig geben werde und dann hoffe ich dass es nicht noch einmal so weit kommt ist ja auch gefährlich, Gebärmutterentzündung + Mamatumoren, das muss nicht sein, wenn das auch nicht hilft muss sie leider auf den Op-Tisch.

Manche Hündinnen haben leider immer wieder Probleme damit. Unsere Mädels hatten das Gott sei Dank nie, aber ich halte seit Jahren nur noch Rüden, daher kann ich Dir da gar keinen Tipp geben. Eine Freundin von mir hat eine Hündin und deren erste Läufigkeit war der reinste Horror. Monate lang war das Mädchen zu nichts zu gebrauchen. Die zweite Läufigkeit war schon viel besser. Also würde ich abwarten. Wenn es gar nicht besser wird, kann man immer noch kastrieren. Aber auch Kastrationen haben eben Nachteile (zwar ist die Gefahr von Mammatumoren geringer, aber dafür steigt die Gefahr anderer Krebsarten ziemlich stark an - nur einer der Nachteile), daher sollte man sich gut informieren und die Entscheidung abwägen. Viele TÄ greifen leider zu schnell zum Skalpell. Es gibt ein gutes Buch zum Thema "Kastration und Verhalten beim Hund".

Ganz faszinierend finde ich ja, wie unsere Hunde ohne diese Weisheiten 100000 von Jahren überleben konnten. und erst unsere Kinder. Ein Wunder.

Ach. meinte damit nur, dass die Fleischfütterung super ist, aber warum muß man das abwiegen denn so übertreiben? Immer noch Welten besser als dieses mistige, billig zusammengeschmissene Trocken-Getreide-Futter. Hat sich da wirklich schon einmal jemand die Zusammensetzung durch geschaut? Von wegen-ausgewogen. das ich nicht lache.

Babette, Du kannst diese Hinweise gern alle ignorieren. Gib ruhig gekochte Knochen, füttere am besten nur magere, rohe Schweinelende(am besten Wildschwein), gib dazu noch jeden Tag einen Kehlkopf vom Rind, täglich 5 EL Seealgen und 1 Liter Lebertran, und als Gemüse bitte nur rohen Rhabarber und bloß keine Innereien, dafür rohen Karpfen. Aber dann wundere Dich nicht, dass Dein Hund krank wird und geh bitte nicht zum TA und behaupte, Du würdest barfen. Sag dann dem TA, Du würdest konzeptlose Fleischfütterung betreiben. Nicht, dass er noch auf die Idee kommt, BARF sei mal wieder daran Schuld, dass der Hund dann krank ist.

Hallo Nd.W.; Du hast vollkommen recht wie Du den Umgang mit dem barfen beschreibst, man muss sich als Hundebesitzer eben etwas Gedanken zur Ernährung des Hundes machen. Aber wer tut das heute schon hat doch gerade die Fertigfutterindustrie Milliarden im Umlauf und versucht mit Ihrem Marketing die Hundebesitzer auf Ihren Weh zu locken. Grundsätzlich gilt, dass man sich bei der Ernährung eines Hundes wie auch dessen Besitzer Gedanken machen sollte was wohl richtig ist. Nun wir haben bei unserem Hund im Alter von 8 Wochen mit dem Barfen begonnen. Er hatte leider eine etwas schwere Welpenzeit, da er an einem Megaösophagus gelitten hat. Ihn hatten die Tierärzte zu diesem Zeitpunkt bereits aufgegeben und man hatte uns den Rat gegeben den Welpen doch einzuschläfern.

Hallöchen und vielen Dank für diese sehr Hilfreiche Seite :)

Was mich nur verwirrt das man folgendes nicht füttern sollte: "Kein Schilddrüsengewebe (Kehlkopf oder Kopffleisch-Mixe) füttern – Schädigung der Schilddrüse!" Ist denn Kopffleisch vom Rind nicht ratsam? Und Kehlkopfknochen?

Hallo,danke für diese tollen Tipps.Super Seite.Ich habe aber eine Frage.Es heißt man soll Salz zum Futter geben damit der Hund mit Natrium versorgt ist.Ich möchte aber anstelle Salz Blut dazu geben.Nur wieviel?Ich habe bisher nirgendwo genaue Angaben gefunden:(.Der Hersteller sagt pro 100g Futter 1blister(5g).Mein Hund ist jetzt 5 Monate alt und wiegt fast8Kilo.Er bekommt im Moment noch 7%seines Gewichtes.Also ca 4 Blister dann täglich? Lg

Da es dann nicht besser wurde zum TA. TA hat nicht viel gemacht, eine Spritze gegen Übelkeit und Estifor Kautabletten 2x 1/4 Tabl.

Nun geht es immer rauf und runter. gut ist es immer noch nicht. (Giardien können ausgeschlossen werden.)

Im Allgem. füttere ich 3-4 Sorten Fertigbarf, alles ohne zus. Kohlenhydrate (gewolft)von Happypets.

Ich habe mich heute für ein Ausschlußverfahren entschlossen, dh. eine Sorte eine Woche lang zu füttern.

wir haben einen Hund der an SDU leidet und mit Forthyron behandelt wird.Seit einiger Zeit barfen wir. Da es 1 X pro Woche Fisch gibt und ich Karpfen und Forelle gekauft habe, möchte ich mich noch vergewissern, welche Fische ich einem Schildi füttern darf. Vielen Dank für deine Mühe

Hallo Nadine, erstmal ein frohes neues Jahr und vielen Dank für diese vielen sehr informativen Dinge über BARF. Ich habe eine Rhodesian-Ridgeback-Lady (knapp 14 Monate). Ich barfe seit ca. 2 Monaten und am Anfang war es schon etwas schwierig. Mittlerweile frisst sie recht gut. Was aber überhaupt nicht angerührt wird, sind Pansen bzw. Blättermagen. Ich hab schon einige Tricks versucht, aber es wurde alles aus dem Topf raus gefressen, aber Pansen blieb immer schön im Topf. Hast du vllt. eine Idee, wie ich meinen Hund dazu bringe, Pansen zu fressen?

vielen Dank schon mal im Voraus und

liebe Grüße aus Hamburg

ich tu mich grad zum ersten mal auf dieser seite um und bin begeistert - ich kann barf nur empfehlen und mache es seit gut 20 jahren mit verschiedenen hunden. aktuell hab ich nur einen hund, noch eine deutsche schäferhündin aus arbeits-/hütelinien (ja letztere gibt es auch noch), die ich mit 40 tagen vor dem verhungern und erfrieren gerettet hab. sie hatte grad mal die hälfte dessen, was sie hätte haben sollen). knapp 3kg! und hatte die letzte zeit von fäkalien gelebt. die tierärzte sagten mir, die hat nur paar wochen oder monate. sie würde niemals ein jahr werden. ich wollte sie barfen. sie nicht. sie suchte das fleisch raus. selbst hackfleisch - dann dauerte das essen eben eine stunde. aber selbst hackfleisch kann man mit spitzen zähnen nehmen und alles was nicht fleisch ist abschütteln - das geht. frag einer meinen hund. mit den jahren allerdings fraß sie den gesamten mix. ja, heute ist der hund, der kein jahr werden soll, 14 jahre 2 monate alt. hat mit 9 jahren noch ne schwere rattengift-vergiftung überstanden (das hat doch ein depp auf nem hof einfach die hauswand entlang auf den rasen gestreut und nicht angeschrieben. vögel tot, eichhörnchen tot. mein hund auch beinnahe tot). ich muß zugeben, ich hab immer nur sehr grob die pläne eingehalten. aber es war halt immer irgendwie fleisch, innereien, mildes gemüse/obst/grünzeug(außer im winter auch von draußen, zwei blatt brombeere oder brennesselspitze oder so dabei), fett/butter, ei, etwas gutes öl, im wochenmix ausgeglichen dabei. nicht immer täglich alles perfekt. das schien ok zu sein. nun baut sie aber doch etwas ab und hat gelenkschmerzen und ich will's genauer machen. soll ich swanies buch für alte hunde holen oder soll ich dein buch kaufen?

danke für hinweise! und: ich les mich auch in deinen seiten durch - klasse ! auch wenn man vieles weiß, man kann sich doch vergewissern oder immer noch was dazu lernen.

Ganz ganz lieben Dank für all die tollen Tipps. Ich habe nun tiefgefrorenes Fleisch gekauft, dass eingeschweißt ist. Bisher habe ich so eine Packung immer in den Kühlschrank gepackt und auftauen lassen bis zum nächsten Morgen und erst dann ausgepackt. Nun lese ich Deinen Satz

"Fleisch nie unter Luftabschluss auftauen lassen – Lebensgefahr! "

Das heißt auch, das tiefgefrorene immer rausholen und auch zum Auftauen in eine Dose umpacken?

hab ganz vielen lieben Dank für die Info. Ich werde es jetzt direkt aus dem gefrierschran in eine Dose umfüllen zum Auftauen, die wesentlich größer ist, dann ist genügend Luft dazwischen udn zusätzlich hat die Dose noch so ein " eingebautes Belüftungselement so dass heir auch ein wenig Luftzufuhr gewährleistet ist.

Kommentar veröffentlichen

Die Kommentare auf diesem Blog werden moderiert, d. h. sie werden gegebenenfalls nicht freigeschaltet. Werbliche Kommentare (z. B. mit Links) werden generell nicht erlaubt, ebenso wenig wie beleidigende, rassistische oder verfassungswidrige Inhalte. Solange Beiträge, auch kritische, sachlich vorgebracht werden, erfolgt eine Freischaltung. Diese kann einige Zeit in Anspruch nehmen.

Beliebte Posts

Die Jahresimpfung – eine unendliche Geschichte?

BARF – eine Gefahr für die Menschheit?

Bakterielle Belastung von Rohfleisch Kürzlich wurde eine Studie zum Thema „Zoonotische Bakterien und Parasiten im Rohfutter für Hunde und Katzen“ veröffentlicht. Ein Forschungsteam der Universität Utrecht hatte 35 Rohfutterrationen untersucht und herausgefunden, dass diese (Überraschung!) bakteriell belastet waren und zudem auch noch Parasiten (in dem Fall Würmer) enthielten. Die Quintessenz der Studie lautet: Rohfütterung stellt eine Gefahr für Hund und Halter dar, denn…

Berichte aus Kärnten

Freitag, 17. Dezember 2010

Aujeszky - die unerkannte Gefahr

In der Nacht hat sie sich immer mehr am Ohr gekratzt, am nächsten Tag war Jagd und weil das Kratzen nicht besser wurde und sie insgesamt nicht fit war, ließen wir sie für die paar Stunden im Auto. Zurück beim Auto hatte sie sich das Ohr und die Umgebung inzwischen blutig gekratzt, alles war geschwollen. Als ich die Läsionen sah, musste ich sofort an Aujeszky denken. Es wurde jetzt rasant schlimmer, der Kratzzwang unkontrollierbar und sie nicht mal mehr fähig, auf allen Vieren zu stehen.

Also sofort ab zum TA, der mich offensichtlich für völlig irre gehalten hat, als ich meine Befürchtung äußerte. Als Cortisoninjektionen nichts verbesserten sondern sie auch noch anfing zu winseln und schreien und riesige Mengen Valium nötig waren, um sie ruhig zu stellen, sah er jedoch ein, dass ich vielleicht doch Recht hatte.

Also fuhren wir auf die Veterinärmedizinische Hochschule in Wien zur Notambulanz. Dort wartete schon der uns aus 2008 bekannte Neurologe, bestätigte unseren Verdacht und versorgte Aphaia mit Beruhigungsmitteln, Virostatika und Cortison – wohl wissend, dass vermutlich nichts davon mehr helfen würde.

Unsere größte Angst war jetzt, dass sich unsere anderen Hunde auch angesteckt haben könnten und daheim angekommen, mussten wir feststellen, dass Obi sein rechtes Auge zusammenkniff und sich rechts vorn am Fang bereits leicht wund gekratzt hatte und eine Schwellung verursacht hatte. Außerdem zuckte sein Kopf mehrmals pro Minute, als ob er einen „Tick“ hätte. Sein Appettit war gut wie immer.

Das ohnmächtige Gefühl, wenn der eine Hund bereits im Sterben liegt und man beim anderen weiß, dass es genauso kommen wird obwohl er eigentlich noch recht fit aussieht und den ganzen Tag mit auf Jagd war, ist unbeschreiblich beschissen.

Damit man wenigstens versucht, noch irgendwas zu retten, hat Christian Obi auch auf die Notambulanz gebracht, wo er irgendwelche neuartigen Virostatika in abartig hohen Dosierungen bekommen hat plus Cortison, außerdem wurde auch er ruhig gestellt, damit er sich nicht durchs Kratzen selbst verstümmeln kann.

Wie zu erwarten war, hat auch bei ihm – obwohl sicher noch nie ein Hund derartig früh korrekt diagnostiziert worden war – alles nichts geholfen, 27h nach Einlieferung ist auch er gestorben, nachdem Affis Herz bereits in der Früh nach der Einlieferung aufgehört hatte zu schlagen.

Alle weiteren Drückjagden, bei denen die Jagdleiter nicht unbedingt auf uns und unsere Hunde angewiesen sind, haben wir bereits gecancelt. Die Baujagdsaison wird auch anders aussehen ohne die beiden.

Der Verlust ist so unbeschreiblich schmerzvoll und vieles wird ab jetzt anders sein. Wenn man den Samstag, wo die Ansteckung stattgefunden haben muss rekapituliert, kommt heraus, dass das unselige Stück Schwarzwild gegen Ende der Jagd von den beiden noch ordentlich gebeutelt worden ist, nachdem es erlegt worden war.

GsD waren wir in 2 Gruppen unterwegs, sonst hätte es schlimmsten Falls alle 7 erwischt.

Leider ist es gar nicht nötig, dass die Hunde sich an einem erlegten Stück austoben oder es anschneiden, schon der Schleimhaut- und Speichelkontakt beim Binden eines angeschossenen oder gefangenen Stücks reicht für eine Infektion aus.

Blut ist auch, jedoch weniger infektiös. Wenn man den Gedanken weiterspinnt, könnte theoretisch schon die Arbeit auf der Wundfährte ausreichen, wenn der Hund den Schweiß aufleckt oder Ausschuss aufnimmt (was in aller Regel passieren wird).

Einfluß der Hibernation auf die Vermehrung und Ausbreitung von Virus Aujeszky

  • Zdravko Jelesić
  • Renata Kikinis-Jelesić
  • Gojko Jelesić

Zusammenfassung

Die artifizielle Hibernation hemmt und verzögert die Vermehrung und die Ausbreitung von Virus Aujeszky im ZNS. peripher infizierter Kaninchen erheblich.

Hierdurch findet die frühere Beobachtung 1, wonach die Dauer der Inkubationsperiode und des Krankheitsverlaufes des M. Aujeszky bei Kaninchen beträchtlich verlängert ist, eine hinreichende Erklärung.

Literatur

Copyright information

Authors and Affiliations

  • Zdravko Jelesić
    • 1
    • 2
  • Renata Kikinis-Jelesić
    • 1
    • 2
  • Gojko Jelesić
    • 1
    • 2
  1. 1. Medizinisches Forschungslaboratorium Deutschland
  2. 2. Pasteur-Institut Novi Sad

About this article

Personalised recommendations

Cite article

.RIS Papers Reference Manager RefWorks Zotero

  • .BIB BibTeX JabRef Mendeley

    • Unlimited access to the full article
    • Instant download
    • Include local sales tax if applicable

    Cite article

    .RIS Papers Reference Manager RefWorks Zotero

  • .BIB BibTeX JabRef Mendeley

  • Over 10 million scientific documents at your fingertips

    Switch Edition

    © 2017 Springer International Publishing AG. Part of Springer Nature.

    Aujeszky’s Disease

    Morbus Aujeszky; Pseudowut; Pseudorabies, infektiöse Bulbärparalyse, Juckseuche, mad itch

    Aujeszky’s Disease is caused by Suid Herpesvirus 1 (SuHV1), also called the pseudo rabies virus, a member of the Alphaherpesvirinae sub-family and of the Varicellovirus genus. The disease was described by Hungarian veterinarian Aladar Aujeszky in 1902 for the first time and can be found around the globe. Austria’s domestic pig livestock is officially SuHV1 free.

    The virulence of the virus strains fluctuates, but the different types show uniform behaviour from a serological perspective. Less virulent strains are strictly neurotropic and cause no further organ damage, as opposed to the more virulent strains.

    Evidence of very virulent strains can be found in the lungs (infestation of the alveolar macrophages) and the genital tract, as well as in the semen of infected boars.

    The virus reproduces primarily in the epithelial cells of the nasal and pharyngeal mucosa and tonsils. It then spreads through the lymphatic system. The virus moves from its primary location via the olfactory nerve and the nerve fibres within the axoplasm into the trigeminal nerve. Finally, it reaches the central nervous system. Nervous symptoms are caused once the neurons have been damaged.

    The virus can survive in the environment for up to 40 days at 25 °C. The virus is deactivated when heated over 55 °C or with the help of chlorine, ammonium or formalin-based disinfectants. Alcohol and phenols are ineffective.

    Hosts, Risk for Humans

    Main host: pigs (domestic and wild) are the natural reservoir of SuHV1. Domestic pigs in Austria are officially free of Aujeszky’s Disease.

    Dogs, cats, other carnivores (mink, ferret) and ruminants (cattle, sheep, goats) may be infected. They are dead-end hosts -- i.e. there is no transmission from the infected dead-end host to a healthy carnivore or ruminant. The disease mainly ends fatally for the dead-end hosts.

    Humans are not susceptible to SuHV1 infections.

    Aujeszky’s Disease is caused by Suid Herpesvirus 1 (SuHV1), also called the pseudo rabies virus, a member of the Alphaherpesvirinae sub-family and of the Varicellovirus genus. The disease was described by Hungarian veterinarian Aladar Aujeszky in 1902 for the first time and can be found around the globe. Austria’s domestic pig livestock is officially SuHV1 free.

    The virulence of the virus strains fluctuates, but the different types show uniform behaviour from a serological perspective. Less virulent strains are strictly neurotropic and cause no further organ damage, as opposed to the more virulent strains.

    Evidence of very virulent strains can be found in the lungs (infestation of the alveolar macrophages) and the genital tract, as well as in the semen of infected boars.

    The virus reproduces primarily in the epithelial cells of the nasal and pharyngeal mucosa and tonsils. It then spreads through the lymphatic system. The virus moves from its primary location via the olfactory nerve and the nerve fibres within the axoplasm into the trigeminal nerve. Finally, it reaches the central nervous system. Nervous symptoms are caused once the neurons have been damaged.

    The virus can survive in the environment for up to 40 days at 25 °C. The virus is deactivated when heated over 55 °C or with the help of chlorine, ammonium or formalin-based disinfectants. Alcohol and phenols are ineffective.

    Hosts, Risk for Humans

    Main host: pigs (domestic and wild) are the natural reservoir of SuHV1. Domestic pigs in Austria are officially free of Aujeszky’s Disease.

    Dogs, cats, other carnivores (mink, ferret) and ruminants (cattle, sheep, goats) may be infected. They are dead-end hosts -- i.e. there is no transmission from the infected dead-end host to a healthy carnivore or ruminant. The disease mainly ends fatally for the dead-end hosts.

    Humans are not susceptible to SuHV1 infections.

    Transmission

    The agent is mainly transmitted via latently infected pigs (weak or no clinical symptoms) to healthy pigs in domestic pig livestock. However, it could also be transmitted by hand contact during animal care, via feed and/or in close quarters, as well as via air movements (airborne) in heavily infected livestock. The infection spreads quickly in regions with a high-level of pig farming.

    Other sources of infection:

    • nasal discharge (virus discharge 2-4 weeks after primary infection of the pig, rarely up to 6 months)
    • milk and sperm

    Pregnant sows spread the virus via:

    Susceptible are not the only animals that may become carriers, but vaccinated animals may carry the virus, too. As a result, vaccinations to prevent this disease are prohibited in Austria. The virus retreats to the trigeminal ganglia and the tonsils following an infection and can be identified there for more than a year. Stress such as animal transportation and similar situations, could lead to a repeated discharge of the virus.

    Latently infected wild boars, as well as latently infected domestic pigs, can also be carriers. The transmission does not depend on the seasons.

    The most common source of infection for carnivores is the intake of meat and offal from infected (also latently infected) pigs and piglets, and occasionally also infected rats.

    • Piglets: initially fever, vomiting, impaired movement, movement in circles, inability to swallow, excess saliva, dysfunctional central nervous system: muscle tremors, cramps, paddling movements of extremities and partial paralysis; the mortality rate in piglets up to 2 weeks is 100 %; in 3-4 week old piglets still 50 %; young animals from 1-3 months show weak appetites, runny noses (nasal discharge), slight fever and difficulty breathing. Death mostly occurs only when the central nervous system has been damaged.
    • Weaned/fattening pigs: respiratory diseases, high fever, depression, poor weight gains, damage to central nervous system is rare. Incubation period is 3-5 days at a morbidity rate of 100 % and a mortality rate of 5 %.
    • Sow/boar: fertility issues
    • Wild boar: barely show the same level of clinical signs as domestic pigs - there are often no recognisable symptoms of the disease.
    • Dogs/cats/cattle/small ruminants: encephalitis and myelitis with central nervous symptoms, salivation and severe itching. The disease always ends fatally within 1-3 days for these animals.

    Unlike rabies, infected dead-end hosts are thirsty, carnivores show no aggressiveness and ruminants are not afraid of water or show respiratory symptoms -- e.g. excessive panting or being short of breath.

    Combating Ausjeszky‘s Disease

    Preventing the introduction of Aujeszky’s Disease in healthy regions (all of Austria) and testing domestic pig livestock using appropriate actions, such as monitoring programmes.

    A vaccination to prevent this disease is prohibited in Austria!

    Live vaccines developed for pigs are pathogenic for cattle, dogs and cats, inactive vaccines are ineffective.

    The Federal Ministry of Health recommends checking the relevant bio-safety measures on farms due to the occurrence of Aujeszky’s disease in wild boars -- such as:

    • Change shoes/overalls before entering the pigsty
    • Avoid contact between domestic pigs and wild boars
    • Wash hands also before entering the pigsty
    • Do not gut wild boar on your on premises
    • Adhering to the ban on liquid feeds is assumed
    • Do not feed raw meat or offal to cats and dogs.

    Legal Regulations

    An infection of domestic pigs must be reported to the authorities, in line with Art.16 of the Austrian Law on epizootic diseases.

    There is a permanent monitoring programme for domestic pig livestock in place in Austria. The observations from this monitoring programme form the basis for the annual assessment of the Aujeszky situation in Austria. Austria has been officially free from Aujeszky’s Disease in domestic pigs since 1997, according to the results of these examinations.

    The Council Directive from 26th June, 1964 on the regulation of animal health problems affecting intra-Community trade in bovine animals and swine (64/432/EEC) in its amended form, Veterinary Amendment Law 2007, in its amended form.

    NOTE: here you will find selected legal texts from the European Union and Austrian jurisdiction (law acts, regulations and promulgations).

    The entire, up-to-date Austrian body of law and Community Law can be found on these links:

    AGES cannot be made liable for the updatedness of the legal bases. They are a service to our customers and are for information purposes only - the current legal texts (consolidated form) can be found in the databases mentioned above (EUR-LEX and RIS).

    Literature

    DAHLE, J., PATZELT, T., SCHAGEMANN, G., LIESS, B. (1993): Antibody prevalence of hog cholera, bovine viral diarrhoea and Aujeszky’s disease virus in wild boars in Northern Germany. Dtsch. Tierärztl. Wschr. 100, 330 - 333.

    FANKHAUSER, R., FATZER, R., STECK, F., ZENDALI, J.-P. (1975): Morbus Aujeszky bei Hund und Katze in der Schweiz. Schweiz. Arch. Tierheilk. 117, 623 - 629.

    FLIR, K. (1982): Aujeszky's Disease in Swine and dogs from the pathologist's view. Tierärztl. Praxis 10(4), 481 - 490.

    GORE, R., OSBORNE, A.S. (1977): Aujeszky’s disease in a pack of hounds. Vet. Rec. 101, 93 - 95.

    HAHN, E.C., PAGE, G.R., HAHN, P.S., GILLIS, K.D., ROMERO,C., ANNELLI, J.A., GIBBS, E.P.J. (1997): Mechanism of transmission of Aujeszky’s disease virus originating from feral swine in the USA. Vet. Microbiol. 55, 123 - 130.

    HARRIS, A. (1968): Aujeszky’s disease in a dog. J. Am. Vet. Med. Assoc. 152, 54.

    HENDERSON, J.P., GRAHAM, D.A., STEWART, D. (1995): An outbreak of Aujeszky’s disease in sheep in Northern Ireland. Vet. Rec. 136, 555 - 557.

    HERMANN, S.C., HEPPNER, B, LUDWIG, H. (1984): Pseudorabies virus from clinical outbreaks and latent infections grouped into four major genome types. In: WITTMANN, G., GASKELL R.M., RHIZA, H.J (eds): Latent herpes virus infections in veterinary medicine. Curr. Top. Vet. Anim. Sci. 27, 387 - 401.

    HORZINEK, M.C., Schmidt, V., Lutz, H. (2005): Krankheiten der Katze. Enke Verlag, Stuttgart, ISBN: 978383041049

    HUGOSON, G., ROCKBORN G. (1972): On the occurrence of pseudorabies in Sweden. II. An outbreak in dogs caused by feeding abattoir offal. Zbl. Vet. Med. B 19, 641 - 645.

    JACOBS, L., MULDER, W., DERCKSEN, D., VOS, J., RAYMAKERS, R., KIMMAN, T. (1997): Detection of wild-type Aujeszky´s disease virus by polymerase chain reaction in sheep vaccinated with a modified live vaccine strain. Res. Vet. Sci. 62, 271 - 274.

    JUBB, K.F., HUXTABLE, C.R. (1993): The nervous system. In: JUBB, K.F., KENNEDY, P., PALMER, N. (eds): Pathology of domestic animals. 4th ed., vol. 1, Academic Press, San Diego, p. 406 - 409.

    KAADEN, O.-R. (2002): Viruskrankheiten der Tiere. In: ROLLE, M.,MAYR, A. (Hrsg.): Medizinische Mikrobiologie, Infektions- und Seuchenlehre. 7. Auflage, Enke, Stuttgart, S. 192 - 198.

    KNÖSEL, H. (1968): Zur Histopathologie der Aujeszky’schen Krankheit bei Hund und Katze. Zbl. Vet. Med. B 15, 592 - 598.

    KRAFT, W.R., Dürr, U.M., Hartmann, K. (2003): Katzenkrankheiten. Verlag M&H-Schaper GmbH & Co KG, Alfeld (Leine) - Hannover, Germany

    MATSUOKA, T., IIJIMA, Y., DAKURAI, K., KONOSU, Y., TAMIYA,K., OKI, M., ARAI, N., KODA M. (1988): Aujeszky’s disease in a dog. Jap. J. Vet. Sci. 50, 277 - 278.

    MONROE, W.E. (1989): Clinical signs associated with pseudorabies in dogs. J. Am. Vet. Med. Assoc. 195, 599 - 602.

    MÜLLER, T., KLUPP, B., ZELLMER, R., TEUFFERT, J., ZIEDLER, K., POSSARDT, C., MEWES, L., DRESENKAMP, B., CONRATHS, F.J., METTENLEITER, T.C. (1998): Characterisation of pseudorabies virus isolated from wild boar (Sus scrofa). Vet. Rec. 143, 337 - 340.

    MÜLLER, T.F., TEUFFERT, J., ZLLMER, R., CONRATHS F.J. (2001): Experimental infections of European wild boars and domestic pigs with pseudorabies viruses with differing virulence. AJVR 62(2), 252 - 258.

    MÜLLER, T., KLUPP, B.G., FREULING, C., HOFFMANN, B., MOJCICZ, M., CAPUA, I., PALFI, V., TOMA, B., LUTZ, W., RUIZ.FON, F., GORTARZAR, C., HLINAK, A., SCHAARSCHMIDT, U., ZIMMER, K., CONRATHS, F.J., HAHN, E.C., METTENLEITER, T.C. (2010): Characterisation of pseudorabies virus of wild boar origin from Europe. Epidemiol. Infect. 138(11), 1590-1600.

    MÜLLER, T., HAHN, E.C., TOTTEWITZ, F., KRAMER, M., KLUPP, B.G., METTENLEITER, T.C., FREULING C. (2011): Pseudorabies virus in wild swine: a global perspective. Arch Virol. 156(10), 1691 - 705.

    NOWOTNY, N., MÖSTL, K., MADERBACHER, R., ODÖRFER, G., SCHUH, M. (1994): Serological studies in Austrian fattening pigs with respiratory disorders. Acta Vet. Hung. 42, 377 - 379.

    PENSAERT, M., COMMEYNE, S., ANDRIES, K. (1980): Vaccination of dogs, against pseudorabies (Aujeszky's Disease) using an inactivated vaccine. Am. J. Res. 41(12), 2016 - 2019.

    PENSAERT, M., KLUGE, J.P. (1989): Pseudorabies virus (Aujeszky’s disease). In: PENSAERT, M. (ed.): Virus infections of vertebrates. Vol. 2, Virus infections of porcines, Elsevier, Amsterdam, p. 39 - 64.

    POWER, E.P., O’CONNOR, M., DONNELLY, W.J.C., DOLAN, C.E. (1990): Aujeszky’s disease in a cow. Vet. Rec. 126, 13 - 15.

    QUIROGA, M.I., NIETO, J.M., OSORIO, F. (1998): Diagnosis of Aujeszky’s disease virus infection in dogs by use of immunohistochemistry and in-situ hybridization. J. Vet. Med. A 45, 75 - 81.

    SHELL, L.G., ELY, R.W., CRANDELL, R.A. (1981): Pseudorabies in a dog. J. Am. Vet. Med. Assoc. 178, 1159 - 1161.

    SABO, A., RAJKANI, J., RAUS, J., KARELOVA, E. (1968): Studies on the pathogenesisof Aujeszky's disease of cats.Arch. gesamte Virusforsch. 25, 288 - 298.

    STEINRIGL, A., REVILLA-FERNÁNDEZ, S., BAGÓ, Z., SCHMOLL, F. (2011): Pseudorabies virus Infektion beim Wildschwein: ein Risiko für unsere Haustiere? 6. Leipziger Tierärztekongress, Vortrag, Leipziger Blaue Hefte 3, 263 - 265:

    SZWEDA, W., LIPOWSKI, A., CIECIERSKI, H., ZALEWSKI, K., PIRUS, T. (1998): European wild boar (Sus scrofa) as a reservoir of herpesvirus suis 1. Med.Wetery. 54, 541 - 544.

    VANDEVEDE, M. (1998): Pseudorabies. IN: GREENE, C.E. (Hrsg.): Infectious diseases of the Dog and Cat. 2. Auflage, W.B. Saunders, Philadelphia, USA, pp. 126 - 128.

    VENGUST, G., VALENCAK, Z., BIDOVEC, A. (2006): A serological survey of selected pathogens in wild boar in Slovenia. J. Vet. Med. B 53, 24 - 27.

    WAGNER-RIETSCHEL, H. (1994): Die Aujeszkysche Krankheit beim Hund, eine ungewöhnliche Verlaufsform. Prakt. Tierarzt 9, 767 - 768.

    ZUPANCIC, Z., JUKIC, B., LOJKIC, M., CAC, Z, JEMERSIC, L., STAREŠINA, V. (2002): Prevalence of antibodies to classical swine fever, Aujeszky's disease, porcine reproductive and respiratory syndrome, and bovine viral diarrhoea viruses in wild boars in Croatia. J. Vet. Med. B 49, 253 - 256.

    Aujeszky: Cats and Dogs

    Ist die Aujeszky'sche Krankheit auf Haustiere, insbesondere auf Hunde und Katzen, übertragbar?

    Ist die Aujeszky'sche Krankheit auf Haustiere, insbesondere auf Hunde und Katzen, übertragbar?

    Hunde, Katzen, Fleischfresser (Nerze, Frettchen), aber auch Ratten können an Aujeszky erkranken, wenn sie mit infizierten, nicht erhitzten, unbehandelten Schweineprodukten in Kontakt kommen. Die Aufnahme des Virus erfolgt oronasal. Bei Katzen erfolgt die Virusaufnahme fast ausschließlich über rohes infiziertes Schweinefleisch, bei Hunden wird auch von einer Übertragung durch Biss eines infizierten Wildschweins berichtet.

    Können Hunde oder Katzen die Krankheit auf den Menschen übertragen?

    Können Hunde oder Katzen die Krankheit auf den Menschen übertragen?

    Hunde und Katzen sind, wie auch die anderen Fleischfresser, Endwirte und übertragen die Krankheit nicht untereinander bzw. nicht auf den Menschen. Menschen sind für das SHV-1 Virus nicht empfänglich.

    Warum zeigen sich zentralnervöse Symptome?

    Warum zeigen sich zentralnervöse Symptome?

    Nach der oralen Aufnahme gelangt das Virus in den Magen-Darmtrakt, von dort in die lokalen Nervenendigungen und zum Gehirn, insbesondere zum Hirnstamm und zu den Hirnnervenkernen. Die Folge sind Zerstörungen des Hirngewebes durch Entzündungen mit Ausfällen des Nervensystems.

    Wie vermeide ich eine Ansteckung meines Hunde, meiner Katze mit dem Aujeszky Virus?

    Wie vermeide ich eine Ansteckung meines Hunde, meiner Katze mit dem Aujeszky Virus?

    Unkontrollierte Freigänge Ihrer Haustiere in Gebieten mit Aujeszky infizierten Wildschweinen gefährden Ihre Haustiere. Beobachtung des Hundes beim Auslauf und die Vermeidung der Aufnahme von rohem oder ungenügend erhitztem Wildschweinefleisch und deren Innereien durch Katze und Hund (Jagdhunde!) sind Voraussetzung für Präventivvorkehrungen. Auch kleinste Mengen von rohem infektiösem Wildschweinefleisch können Infektionen hervorrufen. Gefährlich ist auch der Kontakt von Jagdhunden mit Schusswunden von Wildschweinen während der Jagd. Die Aufnahme von Kot und Urin spielt für eine Ansteckung eine untergeordnete Rolle.

    Welche Symptome zeigen erkrankte Katzen und Hunde?

    Welche Symptome zeigen erkrankte Katzen und Hunde?

    Die Inkubationszeit beträgt 2-9 Tage (meist jedoch nur 3-5 Tage) und verläuft innerhalb einer Woche meist tödlich. Infizierte Katzen und Hunde zeigen schwere klinische Symptome. Der Tod tritt bei Katzen meist innerhalb von 48 Stunden ein.

    Auffallend sind Verhaltensänderungen wie: Teilnahmslosigkeit, Appetitlosigkeit, verstärkte Atmung, Speichelfluss (wird durch Lähmungserscheinungen im Schlundbereich hervorgerufen = "Pseudowut") aber auch Ruhelosigkeit sowie Durchfall und Erbrechen können auftreten. Infizierte Tiere fiebern oftmals (erhöhte Temperatur bis 41 °C). Viele Tiere entwickeln hochgradigen Juckreiz, bei Katzen oft auch einseitig. Bei Hunden beginnt der Juckreiz meist im Kopfbereich und setzt sich in der Folge auf Hals und Körper fort. Auffallend ist das Benagen der "juckenden" Körperstellen, wobei oft offene Wunden entstehen ("Selbstverstümmelung"). Auch Katzen neigen zur "Selbstverstümmelung" infolge des Juckreizes am Körper. Der Juckreiz kann Krämpfe vortäuschen. Bei Katzen ist Anisokorie (= Unterschied in den Pupillenweiten der Augen) und eine heisere Stimme häufig. Innerhalb von 24 bis max. 48 Stunden kommt es zur Bewusstseinseintrübung, Krämpfen, Lähmungen und schließlich zum Tod.

    Die Krankheit endet bei Hunden und Katzen immer tödlich. Die Symptome werden bei freilaufenden Katzen meist nicht erkannt, da sich die kranken Tiere oft schon im Anfangsstadium der Krankheit verkriechen.

    Gibt es eine Therapie bzw. eine Impfung für erkrankte Hunde und Katzen?

    Gibt es eine Therapie bzw. eine Impfung für erkrankte Hunde und Katzen?

    Es gibt keine Therapie. Bei Katzen und Hunden ist kein wirksamer Impfstoff bekannt. Ältere experimentelle Studien bei Hunden zeigen, dass der Schutz von Hunden durch inaktivierte Vakzinen schwierig ist. Attentuierte Lebendimpfstoffe können nach der Impfung Symptome verursachen, die ebenso tödlich sind wie die natürliche Infektion.

    Wie diagnostiziere ich Aujeszky bei Hunden?

    Wie diagnostiziere ich Aujeszky bei Hunden?

    Die Diagnose stützt sich auf die klinischen Symptome und den raschen progressiven Verlauf. Auffällige Symptome sind Fressunlust, krankhafte Sensibilität, hochgradiger Juckreiz gefolgt von Selbstverstümmelung (Automutilation), extreme Sensibilität auf Berührungen, Taubsein, Speichelfluss, Lidbinde- und Mundschleimhaut gerötet, erhöhte Atemfrequenz (60/min.) sowie frequenter Puls (160/min.) Im Gegensatz zur Tollwut zeigen die erkrankten Tiere Durst, nicht aber Aggressivität. Die Krankheit schreitet so rasch fort, dass zum Zeitpunkt des Todes nicht genügend Antikörper gebildet wurden. Eine sichere Diagnose wird meist erst nach dem Tode gestellt.

    US Search Desktop

    We appreciate your feedback on how to improve Yahoo Search. This forum is for you to make product suggestions and provide thoughtful feedback. We’re always trying to improve our products and we can use the most popular feedback to make a positive change!

    If you need assistance of any kind, please visit our community support forum or find self-paced help on our help site. This forum is not monitored for any support-related issues.

    The Yahoo product feedback forum now requires a valid Yahoo ID and password to participate.

    You are now required to sign-in using your Yahoo email account in order to provide us with feedback and to submit votes and comments to existing ideas. If you do not have a Yahoo ID or the password to your Yahoo ID, please sign-up for a new account.

    If you have a valid Yahoo ID and password, follow these steps if you would like to remove your posts, comments, votes, and/or profile from the Yahoo product feedback forum.

    • Vote for an existing idea ( )
    • or
    • Post a new idea…
    • Hot ideas
    • Top ideas
    • New ideas
    • Category
    • Status
    • My feedback

    Put on the computer what the public asks for, not everything about the US.

    I asked for a total medal count. I have been looking for 20 minutes and still cannot find it.

    I also asked for a specific medal count for a specific country and got a history of when they first started to compete in the Olympics. I asked for a medal count for 2018, as of today,

    not a history of that country.

    You don't even accept what I have asked.

    • Don't see your idea?
    • Post a new idea…

    US Search Desktop

    • Post a new idea…
    • All ideas
    • My feedback
    • I have a problem 24
    • I have a suggestion 20
    • Other 3
    • What I dislike 29

    Feedback and Knowledge Base

    Give feedback

    • Deutschland Finanzen Mobile DF iOS 1 idea
    • España Finanzas Mobile DF iOS 7 ideas
    • Accounts Dashboard 33 ideas
    • Ad feedback 3 ideas
    • Answers TH 31 ideas
    • Answers TH 0 ideas
    • Answers UV Forum (test version) 10 ideas
    • Australia Celebrity 0 ideas
    • Australia Finance Mobile Android 0 ideas
    • Australia Style 0 ideas
    • Australia Yahoo Tech 0 ideas
    • Autos Pulse 2 ideas
    • Aviate 1,513 ideas
    • Canada Finance 1,099 ideas
    • Canada Finance Mobile Android 0 ideas
    • Canada Finance Mobile DF iOS 3 ideas
    • Canada Finance Mobile iOS 469 ideas
    • Canada Homepage 5,130 ideas
    • Canada Movies 14 ideas
    • Canada News 873 ideas
    • Canada Safely 10 ideas
    • Canada Screen 128 ideas
    • Canada Weather 94 ideas
    • Canada Yahoo Beauty 0 ideas
    • Canada Yahoo Celebrity 10 ideas
    • Canada Yahoo Finance 0 ideas
    • Canada Yahoo Movies 10 ideas
    • Canada Yahoo News 0 ideas
    • Canada Yahoo Style 21 ideas
    • College Football Pick'em 112 ideas
    • Connected TV 362 ideas
    • Corp Mail Test 1 1,313 ideas
    • Corp Mail Testing 1,256 ideas
    • Cricket 24 ideas
    • Daily Fantasy 89 ideas
    • Developer Network 1 idea
    • Double Down 86 ideas
    • Fantasy Baseball 455 ideas
    • Fantasy Basketball 402 ideas
    • Fantasy Football 706 ideas
    • Fantasy Hockey 352 ideas
    • Fantasy Live Scoring on Matchup and Standings 809 ideas
    • Fantasy Ratings and Levels 3 ideas
    • Fantasy Sports Android Apps 1,367 ideas
    • Fantasy Sports iOS Apps 2,127 ideas
    • Finance 1,246 ideas
    • Finance - CA 495 ideas
    • Finance - US 9 ideas
    • Finance ChartIQ 443 ideas
    • Finance Mobile Web 403 ideas
    • Finance Portfolios 810 ideas
    • Finance Stock Screener 35 ideas
    • Finance Tablet 44 ideas
    • Flickr - Profile 290 ideas
    • Flickr Android 60 ideas
    • Flickr for Apple TV 27 ideas
    • Flickr Groups 13 ideas
    • Flickr Internal 0 ideas
    • Flickr iOS Dogfooding 0 ideas
    • Flickr iPad 148 ideas
    • Flickr iPhone 359 ideas
    • Flickr New Photo Page 8,030 ideas
    • Flickr Search 0 ideas
    • Food Magazines 0 ideas
    • Games 3,147 ideas
    • Global Maps 1,023 ideas
    • GS Mobile Web 42 ideas
    • Health Pulse 3 ideas
    • Home Page (Android) 1,689 ideas
    • Home Page (iOS) 3,809 ideas
    • Hong Kong Homepage 0 ideas
    • India Celebrity 43 ideas
    • India Finance 493 ideas
    • India Homepage 1,872 ideas
    • India Lifestyle 173 ideas
    • India Movies 84 ideas
    • India News 334 ideas
    • India Partner Portal Tata 0 ideas
    • India Partner Portal Tikona 0 ideas
    • India Safely 15 ideas
    • India Screen 165 ideas
    • India Weather 30 ideas
    • India Yahoo Beauty 0 ideas
    • India Yahoo Celebrity 4 ideas
    • India Yahoo Finance 0 ideas
    • India Yahoo Movies 16 ideas
    • India Yahoo News 0 ideas
    • India Yahoo Style 14 ideas
    • Indonesia Celebrity 38 ideas
    • Indonesia Homepage 1,164 ideas
    • Indonesia News 170 ideas
    • Indonesia Safely 29 ideas
    • Indonesia She 34 ideas
    • Ireland Homepage 90 ideas
    • Jordan Maktoob Homepage 419 ideas
    • Mail Ad Feedback 10 ideas
    • Maktoob الطقس مكتوب 5 ideas
    • Maktoob Celebrity 1 idea
    • Maktoob Entertainment 10 ideas
    • Maktoob Lifestyle 0 ideas
    • Maktoob Movies 2 ideas
    • Maktoob News 182 ideas
    • Maktoob Screen 15 ideas
    • Maktoob Style 1 idea
    • Maktoob ألعاب مكتوب 0 ideas
    • Maktoob شاشة مكتوب 28 ideas
    • Malaysia Homepage 17 ideas
    • Malaysia News 58 ideas
    • Malaysia Safely 7 ideas
    • Malaysia Video 0 ideas
    • Malaysia Weather 1 idea
    • Merchant Solutions 1 idea
    • My Yahoo 31,965 ideas
    • My Yahoo - back up 1 idea
    • My Yahoo - US 9,176 ideas
    • My Yahoo archive 314 ideas
    • New Mail 11,306 ideas
    • New Mail* 3,165 ideas
    • New Zealand Business & Finance 132 ideas
    • New Zealand Homepage 1,039 ideas
    • New Zealand Safely 3 ideas
    • New Zealand Screen 0 ideas
    • PH ANC News 21 ideas
    • Philippines Celebrity 214 ideas
    • Philippines Homepage 9 ideas
    • Philippines News 123 ideas
    • Philippines Safely 12 ideas
    • Philippines Video 0 ideas
    • Philippines Weather 3 ideas
    • Pick N Roll 19 ideas
    • Postmaster 43 ideas
    • Pro Football Pick'em 103 ideas
    • Retail Pulse 0 ideas
    • Rivals 11 ideas
    • Safely 165 ideas
    • Screen for iOS 0 ideas
    • Search Extensions 98 ideas
    • Search Product Downloads 89 ideas
    • Security 497 ideas
    • Sign-In Experience 79 ideas
    • Singapore Entertainment 20 ideas
    • Singapore Finance 230 ideas
    • Singapore Homepage 1,052 ideas
    • Singapore News 214 ideas
    • Singapore Safely 11 ideas
    • Singapore Screen 19 ideas
    • Singapore Weather 4 ideas
    • Singapore Yahoo Beauty 0 ideas
    • Singapore Yahoo Celebrity 4 ideas
    • Singapore Yahoo Finance 0 ideas
    • Singapore Yahoo Movies 0 ideas
    • Singapore Yahoo News 0 ideas
    • Singapore Yahoo Style 4 ideas
    • South Africa Celebrity 8 ideas
    • South Africa Homepage 374 ideas
    • South Africa News 23 ideas
    • Sports Android 1,534 ideas
    • Sports CA 35 ideas
    • Sports iOS 1,026 ideas
    • Sports Redesign 3,203 ideas
    • SportsReel 6 ideas
    • StatTracker Beta 581 ideas
    • Survival Football 81 ideas
    • Taiwan Yahoo 名人娛樂 0 ideas
    • Taiwan Yahoo 運動 0 ideas
    • Test 0 ideas
    • Thailand Safely 2 ideas
    • Toolbar Mail App 216 ideas
    • Toolbar Weather App 72 ideas
    • Tourney Pick'em 44 ideas
    • UK & Ireland Finance 1,077 ideas
    • UK & Ireland Games 19 ideas
    • UK & Ireland Homepage 455 ideas
    • UK & Ireland News 0 ideas
    • UK & Ireland News Internal bucket 0 ideas
    • UK & Ireland News Lego 378 ideas
    • UK & Ireland Safely 38 ideas
    • UK & Ireland TV 21 ideas
    • UK & Ireland Video 187 ideas
    • UK & Ireland Weather 100 ideas
    • UK Answers 1 idea
    • UK Daily Fantasy 1 idea
    • UK Finance Mobile Android 12 ideas
    • UK Finance Mobile DF iOS 2 ideas
    • UK Finance Mobile iOS 310 ideas
    • UK Yahoo Movies 23 ideas
    • US Answers 8,999 ideas
    • US Answers Mobile Web 2,156 ideas
    • US Autos GS 442 ideas
    • US Celebrity GS 661 ideas
    • US Comments 350 ideas
    • US Finance Mobile Android 44 ideas
    • US Finance Mobile iOS 579 ideas
    • US Flickr 264 ideas
    • US Groups 4,225 ideas
    • US Homepage B1 68 ideas
    • US Homepage B2 33 ideas
    • US Homepage B3 50 ideas
    • US Homepage B4 33 ideas
    • US Homepage B5 0 ideas
    • US Homepage M 7,021 ideas
    • US Homepage YDC 43 ideas
    • US Homes GS 203 ideas
    • US Live Web Insights 24 ideas
    • US Mail 193 ideas
    • US Mail 12,391 ideas
    • US Maps 3,491 ideas
    • US Membership Desktop 8,186 ideas
    • US Membership Mobile 91 ideas
    • US Movies GS 424 ideas
    • US Music GS 195 ideas
    • US News 6,054 ideas
    • US Search App Android 2 ideas
    • US Search App iOS 13 ideas
    • US Search Chrome Extension 780 ideas
    • US Search Chrome Extension v2 2,197 ideas
    • US Search Desktop 1 idea
    • US Search Desktop Bucket A 7 ideas
    • US Search Desktop Bucket B 8 ideas
    • US Search KG 2 ideas
    • US Search Local Listings 20,803 ideas
    • US Search Mobile Web 1 idea
    • US Search Mozilla 0 ideas
    • US Search Stock Quotes 11 ideas
    • US Search Tablet Web 1 idea
    • US Shine GS 1 idea
    • US Toolbar 5,548 ideas
    • US Travel GS 207 ideas
    • US TV GS 367 ideas
    • US Weather 2,322 ideas
    • US Weather Bucket 0 ideas
    • US Weather Mobile 13 ideas
    • US Weather Mobile Android 2 ideas
    • Video Guide Android 150 ideas
    • Video Guide iOS 207 ideas
    • Video Guide Testing 15 ideas
    • Web Hosting 4 ideas
    • Whitelist Yahoo Mail 0 ideas
    • Yahoo Accessibility 359 ideas
    • Yahoo Autos 71 ideas
    • Yahoo Beauty 102 ideas
    • Yahoo Celebrity 0 ideas
    • Yahoo Celebrity Canada 0 ideas
    • Yahoo Decor 0 ideas
    • Yahoo Entertainment 357 ideas
    • Yahoo Esports 50 ideas
    • Yahoo Feedback 0 ideas
    • Yahoo Finance Feedback Forum 1 idea
    • Yahoo Finance IN Mobile Android 0 ideas
    • Yahoo Finance SG Mobile Android 1 idea
    • Yahoo FinanceReel 4 ideas
    • Yahoo Food 118 ideas
    • Yahoo Gemini 2 ideas
    • Yahoo Health 90 ideas
    • Yahoo Help 330 ideas
    • Yahoo Home 232 ideas
    • Yahoo Home* 28 ideas
    • Yahoo Lifestyle 168 ideas
    • Yahoo Live 0 ideas
    • Yahoo Mail 2,341 ideas
    • Yahoo Mail Android App 414 ideas
    • Yahoo Mail Basic 642 ideas
    • Yahoo Mail iOS App 55 ideas
    • Yahoo Mail Mobile Web 1 idea
    • Yahoo Makers 51 ideas
    • Yahoo Messenger 92 ideas
    • Yahoo Mobile Developer Suite 61 ideas
    • Yahoo Mobile for Phone 15 ideas
    • Yahoo Mobile for Tablet 0 ideas
    • Yahoo Music 78 ideas
    • Yahoo News Digest Android 870 ideas
    • Yahoo News Digest iPad 0 ideas
    • Yahoo News Digest iPhone 1,531 ideas
    • Yahoo Newsroom Android App 59 ideas
    • Yahoo Newsroom iOS App 34 ideas
    • Yahoo Parenting 63 ideas
    • Yahoo Politics 118 ideas
    • Yahoo Publishing 13 ideas
    • Yahoo Real Estate 2 ideas
    • Yahoo Tech 461 ideas
    • Yahoo Travel 143 ideas
    • Yahoo TV 103 ideas
    • Yahoo View 217 ideas
    • Yahoo Weather Android 2,142 ideas
    • Yahoo Weather iOS 22,803 ideas
    • Yahoo! 7 Food App (iOS) 0 ideas
    • Yahoo! 7 Homepage Archive 57 ideas
    • Yahoo! 7 News (iOS) 23 ideas
    • Yahoo! 7 Screen 0 ideas
    • Yahoo! 7 TV FANGO App (Android) 1 idea
    • Yahoo! 7 TV FANGO App (iOS) 1 idea
    • Yahoo! 7 TV Guide App (Android) 0 ideas
    • Yahoo! 7 TV Guide App (iOS) 1,249 ideas
    • Yahoo! 7 TV Plus7 App (iOS) 0 ideas
    • Yahoo! Concept Test Feedback Center 174 ideas
    • Yahoo! Contributor Network 1 idea
    • Yahoo! Transliteration 29 ideas
    • YAHOO!7 Finance 553 ideas
    • Yahoo!7 Games 9 ideas
    • Yahoo!7 Safely 19 ideas
    • Yahoo7 Finance Mobile DF iOS 12 ideas
    • Yahoo7 Finance Mobile iOS 217 ideas
    • Yahoo7 Homepage 2,549 ideas
  • Your password has been reset

    We have made changes to increase our security and have reset your password.

    We've just sent you an email to . Click the link to create a password, then come back here and sign in.

    Detection and molecular characterization of Suid herpesvirus type 1 in Austrian wild boar and hunting dogs

    Aujeszky's disease (AD), caused by Suid herpesvirus type 1 (SuHV-1), is an economically important disease in domestic swine. Thus, rigorous control programmes have been implemented and consecutively AD in domestic swine was successfully eradicated in many countries, including Austria. However, SuHV-1 continues to thrive in wild boar populations, as indicated by high seroprevalences in a number of European countries and by occasional cases of AD in hunting dogs.

    For the first time, SuHV-1 was detected in Austrian wild boar and a molecular characterization of SuHV-1 isolated from wild boar and hunting dogs was performed. Results of preliminary serological analyses suggest a regional SuHV-1 seroprevalence of over 30% in free-living and almost 70% in fenced wild boar from Eastern Austria. Molecular typing of Austrian SuHV-1 isolates of wild boar origin revealed the presence of two genetically distinct variants of SuHV-1, both capable of infecting dogs that have been exposed to infected wild boar during hunting.

    Choose an option to locate/access this article:

    Check if you have access through your login credentials or your institution.

    A picture of trends in Aujeszky’s disease virus exposure in wild boar in the Swiss and European contexts

    • Roman Kaspar Meier
    • Francisco Ruiz-Fons
    • Marie-Pierre Ryser-Degiorgis Email author

    Background

    In parallel to the increase of wild boar abundance in the past decades, an increase of exposure to the Aujeszky’s disease virus (ADV) has been reported in wild boar in several parts of Europe. Since high animal densities have been proposed to be one of the major factors influencing ADV seroprevalence in wild boar populations and wild boar abundance has increased in Switzerland, too, a re-evaluation of the ADV status was required in wild boar in Switzerland. We tested wild boar sera collected from 2008–2013 with a commercial ELISA for antibodies against ADV. To set our data in the European context, we reviewed scientific publications on ADV serosurveys in Europe for two time periods (1995–2007 and 2008–2014).

    Seven out of 1,228 wild boar sera were positive for antibodies against ADV, resulting in an estimated seroprevalence of 0.57 % (95 % confidence interval CI: 0.32–0.96 %). This is significantly lower than the prevalence of a previous survey in 2004–2005. The literature review revealed that high to very high ADV seroprevalences are reported from Mediterranean and Central-eastern countries. By contrast, an “island” of low to medium seroprevalences is observed in the centre of Europe with few isolated foci of high seroprevalences. We were unable to identify a general temporal trend of ADV seroprevalence at European scale.

    Conclusions

    The seroprevalence of ADV in wild boar in Switzerland belongs among the lowest documented in Europe. Considering the disparity of seroprevalences in wild boar in Europe, the fact that seroprevalences in Switzerland and other countries have decreased despite increasing wild boar densities and the knowledge that stress leads to the reactivation of latent ADV with subsequent excretion and transmission, we hypothesize that not only animal density but a range of factors leading to stress - such as management - might play a crucial role in the dynamics of ADV infections.

    Abbreviations

    Aujeszky’s disease virus

    Enzyme linked Immunosorbent assay

    Hunting index of population density

    Centre for Fish and Wildlife Health

    Fisher’s exact test

    Background

    Aujeszky’s disease (AD) or Pseudorabies is an economically important disease of domestic swine that causes substantial losses to the pig industry worldwide, due to decrease of productivity and trade restrictions [ 1 ]. In several European countries and North America AD does not occur in domestic swine owing to successful eradication programs [ 2 , 3 ].

    AD is caused by Aujeszky’s disease virus (ADV) (syn. Suid Herpesvirus 1 or Pseudorabies virus), a Varicellovirus of the Herpesviridae family, subfamily Alphaherpesvirinae [ 4 ]. The only natural hosts of the virus are Suidae (Sus scrofa scrofa) including domestic swine, wild boar and their hybrids. In domestic swine the virus leads to varying clinical courses including high mortality and disorders of the respiratory, reproductive and central nervous systems [ 5 ]. Most other mammals (ungulates, carnivores, lagomorphs and rodents) are susceptible to infection but they represent dead-end hosts and die from infection [ 6 ]. Higher primates including humans are not susceptible to ADV [ 7 ]. A negative impact of ADV infections on free-ranging wild boar populations has not yet been demonstrated, except for two reported AD outbreaks [ 8 , 9 ]. Experimental infections of wild boar with ADV showed that clinical signs depend on the virulence of the strain and the viral dose [ 10 ]. Characterized isolates of ADV from wild boar mostly belong to the genotype I and are of low virulence, whereas those from domestic swine mostly belong to the genotype II [ 11 ]. In agreement with these observations, a study conducted in Spain suggested that ADV seroprevalences in domestic pigs are not directly linked to ADV seroprevalences of wild boar in the same region [ 12 ]. However, it is widely recognized that free-ranging wild boar can act as an ADV reservoir [ 1 , 12 , 13 ] and it is of concern that transmission from wild boar to domestic swine could occur. Pathogen transmission from wild boar to domestic swine has been documented [ 14 , 15 , 16 ] and wild boar have been suspected to be the source of infection for an AD outbreak in domestic pigs in France [ 13 ]. In the past decades an increase of ADV seroprevalences has been observed in European wild boar [ 1 , 3 ], locally reaching very high levels (e.g. 100 % in Spain) [ 17 ]. The dramatic increase of wild boar abundance in Europe during the same period [ 18 ] may have contributed to this process because high ADV seroprevalences seem to be associated with high wild boar population densities [ 19 ] and wild boar aggregation [ 20 ].

    In parallel to the increasing ADV seroprevalences in wild boar, an increase of hunting dogs dying of AD after contact with hunted wild boar has occurred [ 21 , 22 , 23 , 24 , 25 , 26 ]. Furthermore, reports of fatal spillover of ADV on captive wild felids and canids after feeding on infected wild boar carcasses suggests that increased ADV occurrence in wild boar may represent a potential threat for protected large carnivores [ 27 , 28 , 29 ]. Therefore surveillance of ADV in wild ranging wild boar is strongly recommended [ 1 , 3 , 19 , 30 ].

    In Switzerland, a serosurvey of ADV in free-ranging wild boar performed in 2004/2005 revealed a seroprevalence of only 2.8 % (95 % confidence interval (CI): 1.9-4.0 %) [ 31 ]. Since then, hunting bag data have further indicated an increase in wild boar abundance and possibly densities [ 30 ] like elsewhere in Europe. Therefore, it has become of concern that ADV infection prevalence may have also increased.

    The aims of this study were (i) to re-evaluate the status of ADV in the Swiss wild boar population using the methods recommended by the EMIDA-Eranet project APHAEA [ 32 ] and (ii) to compare our data with those from other European wild boar populations, considering two time periods (1995–2007 and 2008–2014).

    Serosurvey in Switzerland

    Map of Switzerland showing the study units and the origin of sampled wild boar. Shades of grey refer to the landscape relief and main lakes are indicated in plain blue. Letters and transparent colored surfaces refer to the five study units: Purple, a = Geneva; Light blue, b = Jura Mountains; Orange, c = Thurgovia; Grey-blue, d = Swiss plateau; Green, e = Ticino. Sera were tested by ELISA for antibodies against ADV. Colored dots, stars and diamonds indicate the location of the sampled wild boar (2008-2013): Pink dots = seronegative; Yellow stars = seropositive; Green diamonds = doubtful

    Review on AD in wild boar in Europe

    Seroprevalence of ADV in free-living wild boar in Europe from 1995-2014. Compilation of published data obtained by ELISA for two time periods: (a) 1995-2007 [ 1 , 3 , 8 , 17 , 19 , 31 , 34 , 35 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 45 , 46 , 47 , 48 , 49 , 50 , 59 , 60 , 62 , 64 , 65 ]; (b) 2008-2014 [ 1 , 17 , 19 , 38 , 43 , 44 , 47 , 61 , 63 , 64 , 82 ]. Numbers refer to estimated seroprevalences for the regions where they are placed.*Fenced animals included. 1 Data obtained over both time periods

    While there is a good to very good data coverage of western Europe during the first time period, there is a lack of information for large parts of Europe during the second time period. Moreover, recent data partially originate from different geographical areas than those collected during the first period (Fig. 2 ), making comparisons difficult. Where such comparisons are possible, all conceivable courses are observed: decreasing in southwestern France [ 60 , 61 ], stable-high in Spain [ 1 ] and increasing in Germany and Croatia [ 19 , 43 , 64 ]. A general pan-European trend was not detected due to this varying regional evolution of the seroprevalences.

    Discussion

    The regional increase of ADV seroprevalence in various wild boar populations in Europe and the increasing number of reports of hunting dogs dying of ADV after exposure to ADV infected wild boar required a re-evaluation of the ADV status of wild boar populations in Switzerland. This study provides current seroprevalence data for Switzerland and sets the obtained results in a European context, examining published data from two time periods.

    In Switzerland, domestic pigs have been officially free of AD since 2001 and there has been no report of AD in other species either during the past decade [ 66 ]. The obtained overall seroprevalence in wild boar was very low, which suggests that ADV infections only sporadically occur in wild boar populations in Switzerland. Compared to the results of the last serosurvey in 2004/2005, we documented a significant decrease from 2.8 % to 0.6 %. This decrease would also be observed if doubtful results were classified as positive (estimated prevalence of 1.2 %). Furthermore, the difference between the previous and present study is enhanced by the fact that seroprevalence had previously been estimated after applying a virus neutralization test on the ELISA-positive samples [ 31 ], thus increasing specificity but reducing sensitivity compared to our present results.

    The seroprevalence estimated for Switzerland remains one of the lowest in Europe. The literature review revealed an inhomogeneous situation at continental scale and over time, with an “island” of low seroprevalences in central Europe, surrounded by medium to high seroprevalences in southern and central-eastern regions. This rough pattern together with the general inhomogeneity of seroprevalences at smaller scale raises the question of the major factors influencing ADV transmission among wild boar.

    Wild boar density has been proposed as a factor influencing ADV seroprevalence [ 1 , 19 , 37 , 39 ]. A comprehensive long-term study in eastern Germany showed a correlation between ADV seroprevalence and the “hunting index of population density” (HIPD, i.e. number of wild boar shot/km 2 /year) [ 19 ]. In south-central Spain, where ADV seroprevalence in wild boar is particularly high, the wild boar is intensively managed for hunting purposes [ 1 , 20 ]. Fencing, artificial feeding and translocations [ 35 , 37 ] lead to extremely high animal densities of up to 90 individuals/100 ha and to a marked aggregation of wild boar around feeders [ 67 ]. Additionally, the scarcity of water in dry habitats results in animal aggregation around water holes [ 67 ]. However, high ADV seroprevalences have also been reported from other areas of Europe, e.g. north-eastern Germany, where industrial wild boar management is apparently uncommon. Furthermore, a general pan-European increase of ADV seroprevalence has not been observed, although a dramatic increase of wild boar has occurred in most parts of Europe since the 1950s, resulting in a wider distribution and higher densities of wild boar populations [ 3 ]. For example, high wild boar densities are associated with a low ADV seroprevalence in Catalonia in northern Spain [ 38 ]. Furthermore, it was documented in Germany that ADV spread in free-ranging wild boar is characterized by an inhomogeneous pattern with cluster formation [ 64 ]. Overall, these observations suggest that additionally to animal densities, other factors influence ADV prevalence in wild boar.

    Intensified intraspecies contacts resulting from aggregation due to a range of factors (e. g. related to wildlife management, climate or social interactions) are expected to favor virus transmission. However, pathogen characteristics may also play a crucial role in this process. Since seropositive animals are infected lifelong by ADV [ 4 ], virus-carrying animals must exist in Switzerland and other regions with low seroprevalence. This raises the question as whether these animals shed the virus or not. Excretion of ADV and resulting infectiousness normally occur within several weeks after infection. However, Herpesviridae have the ability to undergo a latency in sensory ganglia, which inhibits the permanent replication and excretion of the virus [ 4 , 68 ]. The virus may be reactivated later but this reactivation requires a modulation of the immune system, e.g. by a stressful experience [ 69 , 70 , 71 , 72 ]. Indeed, treatment of laboratory mice, domestic pigs and wild boar with immunosuppressive drugs such as dexamethasone, results in reactivation and excretion of ADV [ 10 , 69 , 73 , 74 ]. Identified stressors enhancing ADV activity include concomitant disease conditions, transport, poor animal husbandry and farrowing in domestic pigs [ 69 ], as well as restraint, exposure to cold, and transport in laboratory mice [ 75 ]. In wild boar, mating has been proposed as possible source of stress generating ADV venereal excretion [ 76 ].

    Considering the epidemiological picture of ADV infection in wild boar in Europe and the properties of ADV as a herpesvirus, we propose that factors causing stress may play a major role in the spread and distribution of ADV in wild boar populations. High animal densities, aggregation, overabundance, lack of possibilities to retreat, competition for food, confinement (e.g. fencing), high environmental temperatures, translocations, co-infections with other pathogens, as well as high hunting pressure, drive hunts, and other kinds of disturbance all represent conceivable sources of stress. However, to date it is not possible to identify associations between ADV seroprevalences and such stress factors across Europe due to the lack of information on population management and the inhomogeneity of data on wild boar abundance.

    Conclusions

    ADV seroprevalence in wild boar in Switzerland has remained low since the last study and is among the lowest in Europe. Therefore, we had to reject our hypothesis that ADV seroprevalence would have increased in Switzerland in recent years. Moreover, we documented a general heterogeneity of estimated seroprevalences among countries which suggests that wild boar abundance alone does not explain the patterns of ADV spread. We propose that stress-inducing factors leading to reactivation of the latent virus may play a major role in the spread and maintenance of the virus in the wild. Harmonized methods in wildlife health surveillance and ecology, and risk factor analyses for ADV exposure, infection and shedding patterns in European wild boar populations are required to better understand ADV dynamics at the wildlife-domestic animal interface and design adequate disease control measures.

    Study area

    We selected five different study units (A-E, Fig. 1 ) in Switzerland (41,284 km 2 ) with the aims of: (1) covering the main wild boar habitat; (2) including northern and southern wild boar populations; (3) covering all representative bioregions of Switzerland, i.e. i) the Jura mountains (approx. 4,307 km 2 ), shaped by forests and pastures, ii) the densely populated Swiss Plateau (approx. 11,168 km 2 ), iii) the Alps (approx. 23,000 km 2 ), of which a large part reaches altitudes above the timber line, and iv) the part of Ticino located south from the Alps (approx. 2,812 km 2 ); (4) covering most of the Swiss border to France, Germany and Italy; and (5) complementing former studies on wild boar pathogens in Switzerland [ 77 , 78 ]. Contacts are possible among wild boar in the study units A-D (i.e., northern population) whereas wild boar in study unit E (Ticino, i.e., southern population) are separated from the northern population by the Alps and can only interact with Italian wild boar populations.

    Sample collection and laboratory analysis

    Blood samples collected from 1,228 wild boar over six hunting seasons (2008–2013) were available for this study. In accordance with the national hunting law [ 54 ] a hunting season was defined as lasting from July 1 st to June 30 th of the following year, with most of the hunting bag being harvested from December to February. Samples from wild boar shot before 2012 had been collected in the frame of former projects [ 30 , 79 ] and stored in the archive of the Centre for Fish and Wildlife Health (FIWI Bern, Switzerland), while samples from 2012–2013 were collected for the purpose of the present study. Calculation of the target sample size per hunting season and study unit was derived from the regional hunting bags and performed with the WinEpiscope 2.0 software package. Since 2011 samples sizes have been calculated with the aim of estimating prevalence and assuming a prevalence of 50 %, with a confidence level of 95 % and an accepted absolute error of 5 % [ 78 ]. Efforts were made towards an even age and sex distribution among units. Blood samples were collected either by local hunters and game wardens with provided sampling kits and sent to the FIWI or were obtained by FIWI collaborators at game check points. Blood was collected from the thoracic cavity or the cavernous sinusoid [ 80 ].

    This study did not involve purposeful killing or capture of animals and was exempt from ethical approval according to Swiss legislation. Samples originated from dead wild boar either shot for population regulation purposes (regular hunt, culling by professional game-wardens; 922.0 hunting law) or killed in traffic accidents. Nine samples originated from wild boar found dead submitted to the FIWI for pathological examination.

    Information on weight, sex and body condition of the animals as well as the location, circumstances (found dead, hunted or culled) and date of sampling were systematically collected with a standardized datasheet. According to Hebeisen [ 81 ], wild boar were classified into four age classes: Piglets: <20 kg, striped coat, n = 64; Juveniles: 20-40 kg, reddish coat, n = 342; Subadults: 40-60 kg, black coat, n = 370; Adults: >60 kg, black or silver coat, n = 385; and no age data were delivered for 67 animals. Sex ratio of the sample was balanced, with 597 males and 611 females. Sex was undetermined for 20 animals.

    Blood samples were centrifuged immediately after arrival at the FIWI. Serum aliquots were stored at -20 °C until analysis. Sera were tested for antibodies against ADV with a commercial competitive ELISA kit (IDEXX PRV/ADV gI, IDEXX, Inc., USA) successfully applied in former studies in Spain and Germany [ 1 , 19 , 34 , 37 ]. According to the manufacturer’s instructions, samples with a sample/negative (S/N)-value greater than 0.6 and less or equal to 0.7 were classified as doubtful, and samples with S/N-values greater than 0.7 as positive. All doubtful and positive samples were retested with the same ELISA.

    Literature review

    We performed a review of internationally available scientific articles about serosurveys of ADV. In a first step, three online databases (PubMed, EBSCOhost and Google Scholar) were searched using the key words “wild boar”, “Sus scrofa”, “Aujeszky’s disease” and “pseudorabies”. In a second step, we screened references mentioned in the obtained publications selecting studies conducted between 1995 and 2014 on free-ranging wild boar in Europe and providing seroprevalences obtained by ELISA.

    Data management

    Data handling and coding was carried out with Microsoft Office Excel 2010 (Microsoft Corporation, Redmond, Washington, USA). Two time periods were defined, both for the Swiss data and the literature review, starting arbitrarily 20 years ago and using the first year of the wild boar sampling campaign carried out by the FIWI as a threshold: 1995–2007 (historical data) and 2008–2014 (samples available for the current study). Prevalence calculations and statistical tests were performed with the NCSS 2007 software (J. L. Hintze, Kaysville, Utah, USA). Prevalences were calculated assuming test sensitivity and specificity of 100 % and excluding doubtful ELISA results. The Fisher’s exact test (FET) was used to test for differences in seroprevalence among sexes, age classes, hunting seasons, study units and populations (north and south). Level of significance was set at P < 0.05.

    Maps were designed with the free QGIS- Software (QGIS Development Team, 2012. Versions 1.8.0, 2.0.1 and 2.2.0; QGIS Geographic Information System. Open Source Geospatial Foundation Project, http://qgis.osgeo.org ) and Microsoft PowerPoint 2010 (Microsoft Corporation, Redmond, Washington, USA).

    Acknowledgements

    We thank all hunters, game wardens and cantonal hunting offices who contributed to the sample collection. We are grateful to Mainity Batista-Linhares, Natacha Wu, Chiara Menegatti, Malte Doherr, Nelson Marreros, Sohvi Blatter, Olivia Beerli, Francesco Origgi, Mirjam Pewsner and Miriam Sprick for their support during sampling campaigns. Many thanks go to Mariana Boadella and Christian Gortázar for logistical support, and to Christyn Bailey for checking the English grammar. Financial support was provided by the Federal Food Safety and Veterinary Office FSVO. Francisco Ruiz-Fons is funded by the Spanish Ministry for the Economy and Competitiveness through a ‘Ramón y Cajal’ research contract. This study is a contribution to the European project APHAEA (EMIDA ERA-NET).

    Competing interests

    The authors declare that they have no competing interests.

    Authors’ contributions

    RKM contributed to sample collection, performed the serological tests, analysed the data, reviewed the literature and drafted the manuscript. FRF contributed to the laboratory analyses and data interpretation. MPRD designed and coordinated the study, contributed to data analyses and drafted the manuscript. All authors critically read and approved the final version of the manuscript.

    References

    Copyright information

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

    Authors and Affiliations

    • Roman Kaspar Meier
      • 1
    • Francisco Ruiz-Fons
      • 2
    • Marie-Pierre Ryser-Degiorgis
      • 1
      Email author
    1. 1. Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty University of Bern Bern Switzerland
    2. 2. SaBio group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM) Ciudad Real Spain

    About this article

    Personalised recommendations

    Cite article

    .RIS Papers Reference Manager RefWorks Zotero

  • .BIB BibTeX JabRef Mendeley

  • Cite article

    .RIS Papers Reference Manager RefWorks Zotero

  • .BIB BibTeX JabRef Mendeley

  • Table of contents

    Over 10 million scientific documents at your fingertips

    Switch Edition

    © 2017 Springer International Publishing AG. Part of Springer Nature.

    BARF Hundefutter

    Barfen wird immer öfter von Hundebesitzern angewendet, das heißt sie füttern ihren Hund mit Rohnahrung. Was genau verbirgt sich hinter BARF-Hundefutter und was muss beachtet werden?

    BARF oder B.A.R.F. wird im Deutschen oft mit Biologisch Artgerechtes Rohes Futter erklärt und wird aus dem Englischen mit Bones and Raw Feed abgeleitet. Es verrät damit auch schon die Hauptbestandteile der BARF-Ernährung: Knochen und rohes Fleisch. Anders als Trocken- oder fertiges Nassfutter stehen frische und rohe Zutaten auf dem Hundespeiseplan. Das bringt natürlich einige Vorbereitungen mit sich und wirft bei vielen Hundebesitzern, die neu einsteigen, Fragen auf.

    Die BARF-Ernährung ist aber nicht so schwierig wie gedacht und auch das Umstellen von herkömmlichen Futter auf BARF-Nahrung ist leichter als gedacht. Mittlerweile gibt es auch einige Hersteller, die BARF-Futter in Portionsgrößen anbieten und die Zubereitung damit erleichtern. Es heißt dann also nur noch, die Portion Rohnahrung aufzutauen und zu servieren. Natürlich kann jeder Hundebesitzer das Futter auch selbst herstellen und auf die speziellen Bedürfnisse des Hundes ausrichten.

    Hinter BARF steht das Konzept, dass der Hund von Natur aus ein Fleischfresser ist und damit auch hauptsächlich Fleisch fressen sollte. In freier Wildbahn haben Hunde früher kleine Tiere im ganzen gefressen und dann viele Tage lang gar nichts. Es widerspricht damit dem gängigen Füttern mit Fertigfutter, was oft als Hauptbestandteil Getreide enthält und mehrmals am Tag gefüttert wird.

    Es gibt unterschiedliche Ansichten über die genaue BARF-Zusammensetzung, aber als guter Richtwert gilt, dass der Anteil der Hauptbestandteile, nämlich Knochen und Knorpel zwischen 60 und 70 Prozent liegen sollte. Der Rest sind Fleisch, Fisch und Innereien. Die Fleischsorte sollte variieren und idealerweise von drei verschiedenen Tieren kommen, beispielsweise Rind, Huhn, Pute oder Schaf. Eine größere Vielfalt schadet nicht und ist sogar empfehlenswert für eine ausgewogene Ernährung.

    Wegen des vor ein paar Jahren aufgetretenen Aujeszky-Virus gibt es Bedenken gegenüber Schweinefleisch. In Deutschland ist der Virus seit einigen Jahren erfolgreich bekämpft, aber es wird noch dagegen geimpft, was es erschwert festzustellen, ob ein Schwein ein Virusträger war. In anderen Ländern, wie Schweden, Finnland oder der Schweiz gibt es den Aujeszky-Virus nicht, dort könnte man ohne Bedenken Schweinefleisch füttern oder es von dort beziehen.

    Wenn man die wichtigsten Grundsätze sorgfältig befolgt, zeigt sich, dass Hunde die mit Rohfutter gefüttert werden seltener einen Mangel an Vitaminen und Mineralstoffen haben. Die wichtigsten Punkte für eine ausgewogene Ernährung sind vor allem: vorrangig Fleischknochen, Fleisch von mindestens drei Tieren. Der Rest besteht aus Fleisch und Fisch und mindestens einmal die Woche Innereien, vor allem Leber. Auch etwas Gemüse ist gut für den Hund.

    BMC Veterinary Research

    Table of Contents

    A picture of trends in Aujeszky’s disease virus exposure in wild boar in the Swiss and European contexts

    • Roman Kaspar Meier 1 ,
    • Francisco Ruiz-Fons 2 and
    • Marie-Pierre Ryser-Degiorgis 1Email author

    © Meier et al. 2015

    Published: 7 November 2015

    Background

    In parallel to the increase of wild boar abundance in the past decades, an increase of exposure to the Aujeszky’s disease virus (ADV) has been reported in wild boar in several parts of Europe. Since high animal densities have been proposed to be one of the major factors influencing ADV seroprevalence in wild boar populations and wild boar abundance has increased in Switzerland, too, a re-evaluation of the ADV status was required in wild boar in Switzerland. We tested wild boar sera collected from 2008–2013 with a commercial ELISA for antibodies against ADV. To set our data in the European context, we reviewed scientific publications on ADV serosurveys in Europe for two time periods (1995–2007 and 2008–2014).

    Seven out of 1,228 wild boar sera were positive for antibodies against ADV, resulting in an estimated seroprevalence of 0.57 % (95 % confidence interval CI: 0.32–0.96 %). This is significantly lower than the prevalence of a previous survey in 2004–2005. The literature review revealed that high to very high ADV seroprevalences are reported from Mediterranean and Central-eastern countries. By contrast, an “island” of low to medium seroprevalences is observed in the centre of Europe with few isolated foci of high seroprevalences. We were unable to identify a general temporal trend of ADV seroprevalence at European scale.

    Conclusions

    The seroprevalence of ADV in wild boar in Switzerland belongs among the lowest documented in Europe. Considering the disparity of seroprevalences in wild boar in Europe, the fact that seroprevalences in Switzerland and other countries have decreased despite increasing wild boar densities and the knowledge that stress leads to the reactivation of latent ADV with subsequent excretion and transmission, we hypothesize that not only animal density but a range of factors leading to stress - such as management - might play a crucial role in the dynamics of ADV infections.

    Background

    Aujeszky’s disease (AD) or Pseudorabies is an economically important disease of domestic swine that causes substantial losses to the pig industry worldwide, due to decrease of productivity and trade restrictions [ 1 ]. In several European countries and North America AD does not occur in domestic swine owing to successful eradication programs [ 2 , 3 ].

    AD is caused by Aujeszky’s disease virus (ADV) (syn. Suid Herpesvirus 1 or Pseudorabies virus), a Varicellovirus of the Herpesviridae family, subfamily Alphaherpesvirinae [ 4 ]. The only natural hosts of the virus are Suidae (Sus scrofa scrofa) including domestic swine, wild boar and their hybrids. In domestic swine the virus leads to varying clinical courses including high mortality and disorders of the respiratory, reproductive and central nervous systems [ 5 ]. Most other mammals (ungulates, carnivores, lagomorphs and rodents) are susceptible to infection but they represent dead-end hosts and die from infection [ 6 ]. Higher primates including humans are not susceptible to ADV [ 7 ]. A negative impact of ADV infections on free-ranging wild boar populations has not yet been demonstrated, except for two reported AD outbreaks [ 8 , 9 ]. Experimental infections of wild boar with ADV showed that clinical signs depend on the virulence of the strain and the viral dose [ 10 ]. Characterized isolates of ADV from wild boar mostly belong to the genotype I and are of low virulence, whereas those from domestic swine mostly belong to the genotype II [ 11 ]. In agreement with these observations, a study conducted in Spain suggested that ADV seroprevalences in domestic pigs are not directly linked to ADV seroprevalences of wild boar in the same region [ 12 ]. However, it is widely recognized that free-ranging wild boar can act as an ADV reservoir [ 1 , 12 , 13 ] and it is of concern that transmission from wild boar to domestic swine could occur. Pathogen transmission from wild boar to domestic swine has been documented [ 14 – 16 ] and wild boar have been suspected to be the source of infection for an AD outbreak in domestic pigs in France [ 13 ]. In the past decades an increase of ADV seroprevalences has been observed in European wild boar [ 1 , 3 ], locally reaching very high levels (e.g. 100 % in Spain) [ 17 ]. The dramatic increase of wild boar abundance in Europe during the same period [ 18 ] may have contributed to this process because high ADV seroprevalences seem to be associated with high wild boar population densities [ 19 ] and wild boar aggregation [ 20 ].

    In parallel to the increasing ADV seroprevalences in wild boar, an increase of hunting dogs dying of AD after contact with hunted wild boar has occurred [ 21 – 26 ]. Furthermore, reports of fatal spillover of ADV on captive wild felids and canids after feeding on infected wild boar carcasses suggests that increased ADV occurrence in wild boar may represent a potential threat for protected large carnivores [ 27 – 29 ]. Therefore surveillance of ADV in wild ranging wild boar is strongly recommended [ 1 , 3 , 19 , 30 ].

    In Switzerland, a serosurvey of ADV in free-ranging wild boar performed in 2004/2005 revealed a seroprevalence of only 2.8 % (95 % confidence interval (CI): 1.9-4.0 %) [ 31 ]. Since then, hunting bag data have further indicated an increase in wild boar abundance and possibly densities [ 30 ] like elsewhere in Europe. Therefore, it has become of concern that ADV infection prevalence may have also increased.

    The aims of this study were (i) to re-evaluate the status of ADV in the Swiss wild boar population using the methods recommended by the EMIDA-Eranet project APHAEA [ 32 ] and (ii) to compare our data with those from other European wild boar populations, considering two time periods (1995–2007 and 2008–2014).

    Serosurvey in Switzerland

    Map of Switzerland showing the study units and the origin of sampled wild boar. Shades of grey refer to the landscape relief and main lakes are indicated in plain blue. Letters and transparent colored surfaces refer to the five study units: Purple, a = Geneva; Light blue, b = Jura Mountains; Orange, c = Thurgovia; Grey-blue, d = Swiss plateau; Green, e = Ticino. Sera were tested by ELISA for antibodies against ADV. Colored dots, stars and diamonds indicate the location of the sampled wild boar (2008-2013): Pink dots = seronegative; Yellow stars = seropositive; Green diamonds = doubtful

    Review on AD in wild boar in Europe

    Seroprevalence of ADV in free-living wild boar in Europe from 1995-2014. Compilation of published data obtained by ELISA for two time periods: (a) 1995-2007 [ 1 , 3 , 8 , 17 , 19 , 31 , 34 , 35 , 37 – 43 , 45 – 50 , 59 , 60 , 62 , 64 , 65 ]; (b) 2008-2014 [ 1 , 17 , 19 , 38 , 43 , 44 , 47 , 61 , 63 , 64 , 82 ]. Numbers refer to estimated seroprevalences for the regions where they are placed.*Fenced animals included. 1 Data obtained over both time periods

    While there is a good to very good data coverage of western Europe during the first time period, there is a lack of information for large parts of Europe during the second time period. Moreover, recent data partially originate from different geographical areas than those collected during the first period (Fig. 2 ), making comparisons difficult. Where such comparisons are possible, all conceivable courses are observed: decreasing in southwestern France [ 60 , 61 ], stable-high in Spain [ 1 ] and increasing in Germany and Croatia [ 19 , 43 , 64 ]. A general pan-European trend was not detected due to this varying regional evolution of the seroprevalences.

    Discussion

    The regional increase of ADV seroprevalence in various wild boar populations in Europe and the increasing number of reports of hunting dogs dying of ADV after exposure to ADV infected wild boar required a re-evaluation of the ADV status of wild boar populations in Switzerland. This study provides current seroprevalence data for Switzerland and sets the obtained results in a European context, examining published data from two time periods.

    In Switzerland, domestic pigs have been officially free of AD since 2001 and there has been no report of AD in other species either during the past decade [ 66 ]. The obtained overall seroprevalence in wild boar was very low, which suggests that ADV infections only sporadically occur in wild boar populations in Switzerland. Compared to the results of the last serosurvey in 2004/2005, we documented a significant decrease from 2.8 % to 0.6 %. This decrease would also be observed if doubtful results were classified as positive (estimated prevalence of 1.2 %). Furthermore, the difference between the previous and present study is enhanced by the fact that seroprevalence had previously been estimated after applying a virus neutralization test on the ELISA-positive samples [ 31 ], thus increasing specificity but reducing sensitivity compared to our present results.

    The seroprevalence estimated for Switzerland remains one of the lowest in Europe. The literature review revealed an inhomogeneous situation at continental scale and over time, with an “island” of low seroprevalences in central Europe, surrounded by medium to high seroprevalences in southern and central-eastern regions. This rough pattern together with the general inhomogeneity of seroprevalences at smaller scale raises the question of the major factors influencing ADV transmission among wild boar.

    Wild boar density has been proposed as a factor influencing ADV seroprevalence [ 1 , 19 , 37 , 39 ]. A comprehensive long-term study in eastern Germany showed a correlation between ADV seroprevalence and the “hunting index of population density” (HIPD, i.e. number of wild boar shot/km 2 /year) [ 19 ]. In south-central Spain, where ADV seroprevalence in wild boar is particularly high, the wild boar is intensively managed for hunting purposes [ 1 , 20 ]. Fencing, artificial feeding and translocations [ 35 , 37 ] lead to extremely high animal densities of up to 90 individuals/100 ha and to a marked aggregation of wild boar around feeders [ 67 ]. Additionally, the scarcity of water in dry habitats results in animal aggregation around water holes [ 67 ]. However, high ADV seroprevalences have also been reported from other areas of Europe, e.g. north-eastern Germany, where industrial wild boar management is apparently uncommon. Furthermore, a general pan-European increase of ADV seroprevalence has not been observed, although a dramatic increase of wild boar has occurred in most parts of Europe since the 1950s, resulting in a wider distribution and higher densities of wild boar populations [ 3 ]. For example, high wild boar densities are associated with a low ADV seroprevalence in Catalonia in northern Spain [ 38 ]. Furthermore, it was documented in Germany that ADV spread in free-ranging wild boar is characterized by an inhomogeneous pattern with cluster formation [ 64 ]. Overall, these observations suggest that additionally to animal densities, other factors influence ADV prevalence in wild boar.

    Intensified intraspecies contacts resulting from aggregation due to a range of factors (e. g. related to wildlife management, climate or social interactions) are expected to favor virus transmission. However, pathogen characteristics may also play a crucial role in this process. Since seropositive animals are infected lifelong by ADV [ 4 ], virus-carrying animals must exist in Switzerland and other regions with low seroprevalence. This raises the question as whether these animals shed the virus or not. Excretion of ADV and resulting infectiousness normally occur within several weeks after infection. However, Herpesviridae have the ability to undergo a latency in sensory ganglia, which inhibits the permanent replication and excretion of the virus [ 4 , 68 ]. The virus may be reactivated later but this reactivation requires a modulation of the immune system, e.g. by a stressful experience [ 69 – 72 ]. Indeed, treatment of laboratory mice, domestic pigs and wild boar with immunosuppressive drugs such as dexamethasone, results in reactivation and excretion of ADV [ 10 , 69 , 73 , 74 ]. Identified stressors enhancing ADV activity include concomitant disease conditions, transport, poor animal husbandry and farrowing in domestic pigs [ 69 ], as well as restraint, exposure to cold, and transport in laboratory mice [ 75 ]. In wild boar, mating has been proposed as possible source of stress generating ADV venereal excretion [ 76 ].

    Considering the epidemiological picture of ADV infection in wild boar in Europe and the properties of ADV as a herpesvirus, we propose that factors causing stress may play a major role in the spread and distribution of ADV in wild boar populations. High animal densities, aggregation, overabundance, lack of possibilities to retreat, competition for food, confinement (e.g. fencing), high environmental temperatures, translocations, co-infections with other pathogens, as well as high hunting pressure, drive hunts, and other kinds of disturbance all represent conceivable sources of stress. However, to date it is not possible to identify associations between ADV seroprevalences and such stress factors across Europe due to the lack of information on population management and the inhomogeneity of data on wild boar abundance.

    Conclusions

    ADV seroprevalence in wild boar in Switzerland has remained low since the last study and is among the lowest in Europe. Therefore, we had to reject our hypothesis that ADV seroprevalence would have increased in Switzerland in recent years. Moreover, we documented a general heterogeneity of estimated seroprevalences among countries which suggests that wild boar abundance alone does not explain the patterns of ADV spread. We propose that stress-inducing factors leading to reactivation of the latent virus may play a major role in the spread and maintenance of the virus in the wild. Harmonized methods in wildlife health surveillance and ecology, and risk factor analyses for ADV exposure, infection and shedding patterns in European wild boar populations are required to better understand ADV dynamics at the wildlife-domestic animal interface and design adequate disease control measures.

    Study area

    We selected five different study units (A-E, Fig. 1 ) in Switzerland (41,284 km 2 ) with the aims of: (1) covering the main wild boar habitat; (2) including northern and southern wild boar populations; (3) covering all representative bioregions of Switzerland, i.e. i) the Jura mountains (approx. 4,307 km 2 ), shaped by forests and pastures, ii) the densely populated Swiss Plateau (approx. 11,168 km 2 ), iii) the Alps (approx. 23,000 km 2 ), of which a large part reaches altitudes above the timber line, and iv) the part of Ticino located south from the Alps (approx. 2,812 km 2 ); (4) covering most of the Swiss border to France, Germany and Italy; and (5) complementing former studies on wild boar pathogens in Switzerland [ 77 , 78 ]. Contacts are possible among wild boar in the study units A-D (i.e., northern population) whereas wild boar in study unit E (Ticino, i.e., southern population) are separated from the northern population by the Alps and can only interact with Italian wild boar populations.

    Sample collection and laboratory analysis

    Blood samples collected from 1,228 wild boar over six hunting seasons (2008–2013) were available for this study. In accordance with the national hunting law [ 54 ] a hunting season was defined as lasting from July 1 st to June 30 th of the following year, with most of the hunting bag being harvested from December to February. Samples from wild boar shot before 2012 had been collected in the frame of former projects [ 30 , 79 ] and stored in the archive of the Centre for Fish and Wildlife Health (FIWI Bern, Switzerland), while samples from 2012–2013 were collected for the purpose of the present study. Calculation of the target sample size per hunting season and study unit was derived from the regional hunting bags and performed with the WinEpiscope 2.0 software package. Since 2011 samples sizes have been calculated with the aim of estimating prevalence and assuming a prevalence of 50 %, with a confidence level of 95 % and an accepted absolute error of 5 % [ 78 ]. Efforts were made towards an even age and sex distribution among units. Blood samples were collected either by local hunters and game wardens with provided sampling kits and sent to the FIWI or were obtained by FIWI collaborators at game check points. Blood was collected from the thoracic cavity or the cavernous sinusoid [ 80 ].

    This study did not involve purposeful killing or capture of animals and was exempt from ethical approval according to Swiss legislation. Samples originated from dead wild boar either shot for population regulation purposes (regular hunt, culling by professional game-wardens; 922.0 hunting law) or killed in traffic accidents. Nine samples originated from wild boar found dead submitted to the FIWI for pathological examination.

    Information on weight, sex and body condition of the animals as well as the location, circumstances (found dead, hunted or culled) and date of sampling were systematically collected with a standardized datasheet. According to Hebeisen [ 81 ], wild boar were classified into four age classes: Piglets: <20 kg, striped coat, n = 64; Juveniles: 20-40 kg, reddish coat, n = 342; Subadults: 40-60 kg, black coat, n = 370; Adults: >60 kg, black or silver coat, n = 385; and no age data were delivered for 67 animals. Sex ratio of the sample was balanced, with 597 males and 611 females. Sex was undetermined for 20 animals.

    Blood samples were centrifuged immediately after arrival at the FIWI. Serum aliquots were stored at -20 °C until analysis. Sera were tested for antibodies against ADV with a commercial competitive ELISA kit (IDEXX PRV/ADV gI, IDEXX, Inc., USA) successfully applied in former studies in Spain and Germany [ 1 , 19 , 34 , 37 ]. According to the manufacturer’s instructions, samples with a sample/negative (S/N)-value greater than 0.6 and less or equal to 0.7 were classified as doubtful, and samples with S/N-values greater than 0.7 as positive. All doubtful and positive samples were retested with the same ELISA.

    Literature review

    We performed a review of internationally available scientific articles about serosurveys of ADV. In a first step, three online databases (PubMed, EBSCOhost and Google Scholar) were searched using the key words “wild boar”, “Sus scrofa”, “Aujeszky’s disease” and “pseudorabies”. In a second step, we screened references mentioned in the obtained publications selecting studies conducted between 1995 and 2014 on free-ranging wild boar in Europe and providing seroprevalences obtained by ELISA.

    Data management

    Data handling and coding was carried out with Microsoft Office Excel 2010 (Microsoft Corporation, Redmond, Washington, USA). Two time periods were defined, both for the Swiss data and the literature review, starting arbitrarily 20 years ago and using the first year of the wild boar sampling campaign carried out by the FIWI as a threshold: 1995–2007 (historical data) and 2008–2014 (samples available for the current study). Prevalence calculations and statistical tests were performed with the NCSS 2007 software (J. L. Hintze, Kaysville, Utah, USA). Prevalences were calculated assuming test sensitivity and specificity of 100 % and excluding doubtful ELISA results. The Fisher’s exact test (FET) was used to test for differences in seroprevalence among sexes, age classes, hunting seasons, study units and populations (north and south). Level of significance was set at P < 0.05.

    Maps were designed with the free QGIS- Software (QGIS Development Team, 2012. Versions 1.8.0, 2.0.1 and 2.2.0; QGIS Geographic Information System. Open Source Geospatial Foundation Project, http://qgis.osgeo.org ) and Microsoft PowerPoint 2010 (Microsoft Corporation, Redmond, Washington, USA).

    Abbreviations

    Aujeszky’s disease virus

    Enzyme linked Immunosorbent assay

    Hunting index of population density

    Centre for Fish and Wildlife Health

    Fisher’s exact test

    Declarations

    Acknowledgements

    We thank all hunters, game wardens and cantonal hunting offices who contributed to the sample collection. We are grateful to Mainity Batista-Linhares, Natacha Wu, Chiara Menegatti, Malte Doherr, Nelson Marreros, Sohvi Blatter, Olivia Beerli, Francesco Origgi, Mirjam Pewsner and Miriam Sprick for their support during sampling campaigns. Many thanks go to Mariana Boadella and Christian Gortázar for logistical support, and to Christyn Bailey for checking the English grammar. Financial support was provided by the Federal Food Safety and Veterinary Office FSVO. Francisco Ruiz-Fons is funded by the Spanish Ministry for the Economy and Competitiveness through a ‘Ramón y Cajal’ research contract. This study is a contribution to the European project APHAEA (EMIDA ERA-NET).

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

    Competing interests

    The authors declare that they have no competing interests.

    Authors’ contributions

    RKM contributed to sample collection, performed the serological tests, analysed the data, reviewed the literature and drafted the manuscript. FRF contributed to the laboratory analyses and data interpretation. MPRD designed and coordinated the study, contributed to data analyses and drafted the manuscript. All authors critically read and approved the final version of the manuscript.

    Authors’ Affiliations

    References

    1. Boadella M, Gortázar C, Vicente J, Ruiz-Fons F. Wild boar: an increasing concern for Aujeszky's disease control in pigs? BMC Vet Res. 2012;8:7. PubMed CentralView ArticlePubMedGoogle Scholar
    2. Anonymus: Aujeszky's disease. In: OIE Terrestrial Manual 2012. OIE. 2012; 1–15. Google Scholar
    3. Müller T, Hahn E, Tottewitz F, Kramer M, Klupp B, Mettenleiter T, et al. Pseudorabies virus in wild swine: a global perspective. Arch Virol. 2011;156:1691–705. View ArticlePubMedGoogle Scholar
    4. Pellet PE, Roizmann B. Herpesviridae. In: Fields BN, Knipe DM, Howley PM, editors. Fields Virology. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 1802–22. Google Scholar
    5. Kluge JP, Beran GW, Hill HT, Platt KB: Pseurorabies (Aujeszky's Disease). In: Straw BE, D'Allaire S, Mengeling WL, Taylor DJ, editors. Diseases of Swine.Ames; 1999: 233-46. Google Scholar
    6. Mettenleiter TC. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis-state of the art, June 1999. Vet Res. 2000;31:99–115. PubMedGoogle Scholar
    7. Ruiz-Fons F. Aujeszky's disease, or Pseudorabies. In: Gavier-Widén D, Duff JP, Meredith A, editors. Infectious diseases of wild mammals and birds in Europe. Oxford: Wiley - Blackwell; 2012. p. 4–10. Google Scholar
    8. Gortazar C, Vicente J, Fierro Y, Leon L, Cubero M, Gonzalez M. Natural Aujeszky's disease in a Spanish wild boar population. Ann N Y Acad Sci. 2002;969:210–2. View ArticlePubMedGoogle Scholar
    9. Schulze CHA, Wohlsein P, Kutzer P, Müller T. Spontaneous Aujeszky's disease (pseudorabies) in European wild boars (Sus scrofa) in the federal state of Brandenburg, Germany. Berl Muench Tieraerztl Wochenschr. 2010;123:359–64. Google Scholar
    10. Müller T, Teuffert J, Zellmer R, Conraths F. Experimental infection of European wild boars and domestic pigs with pseudorabies viruses with differing virulence. Am J Vet Res. 2001;62:252–8. View ArticlePubMedGoogle Scholar
    11. Müller T, Klupp B, Freuling C, Hoffmann B, Mojcicz M, Capua I, et al. Characterization of pseudorabies virus of wild boar origin from Europe. Epidemiol Infect. 2010;138:1590–600. View ArticlePubMedGoogle Scholar
    12. Ruiz-Fons F, Vidal D, Vicente J, Acevedo P, Fernández-de-Mera I, Montoro V, et al. Epidemiological risk factors of Aujeszky’s disease in wild boars (Sus scrofa) and domestic pigs in Spain. Eur J Wildl Res. 2008;54:549–55. View ArticleGoogle Scholar
    13. Hars J, Sophie R. Résultats de la surveillance de maladies animales réputées contagieuses (MARC) dans la faune sauvage en France. Bull Acad Vét France. 2009;162:215–23. View ArticleGoogle Scholar
    14. Meng X, Lindsay D. Wild boars as sources for infectious diseases in livestock and humans. Philos Trans R Soc Lond B Biol Sci. 2009;364:2697–707. PubMed CentralView ArticlePubMedGoogle Scholar
    15. Gortazar C, Ferroglio E, Hofle U, Frolich K, Vicente J. Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res. 2007;53:241–56. View ArticleGoogle Scholar
    16. Wu N, Abril C, Thomann A, Grosclaude E, Doherr MG, Boujon P, et al. Risk factors for contacts between wild boar and outdoor pigs in Switzerland and investigations on potential Brucella suis spill-over. BMC Vet Res. 2012;8:116. PubMed CentralView ArticlePubMedGoogle Scholar
    17. Boadella M, Vicente J, Ruiz-Fons F, de la Fuente J, Gortazar C. Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Prev Vet Med. 2012;107:214–21. View ArticlePubMedGoogle Scholar
    18. Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J, et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci. 2015;4:492–500. View ArticleGoogle Scholar
    19. Pannwitz G, Freuling C, Denzin N, Schaarschmidt U, Nieper H, Hlinak A, et al. A long-term serological survey on Aujeszky's disease virus infections in wild boar in East Germany. Epidemiol Infect. 2012;140:348–58. View ArticlePubMedGoogle Scholar
    20. Acevedo P, Vicente J, Hofle U, Cassinello J, Ruiz-Fons F, Gortazar C. Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect. 2007;135:519–27. PubMed CentralView ArticlePubMedGoogle Scholar
    21. Toma B, Dufour B. Transmission de la maladie d'Aujeszky des sangliers sauvages aux suidés domestiques. Epidémiol et Santé Anim. 2004;45:115–9. Google Scholar
    22. Thaller D, Bilek A, Revilla-Fernandez S, Bago Z, Schildorfer H, Url A, et al. Diagnosis of Aujeszky's disease in a dog in Austria. Wien Tierarztl Monatsschr. 2006;93:62–7. Google Scholar
    23. Leschnik M, Gruber A, Kübber-Heiss A, Bagó Z, Revilla-Fernández S, Wodak E, et al. Epidemiologische Aspekte der Aujeszkyschen Krankheit in Österreich anhand von sechs aktuellen Fällen beim Hund. Wien Tierarztl Monatsschr. 2012;99:82. Google Scholar
    24. Cay A, Letellier C. Isolation of Aujeszky’s disease virus from two hunting dogs in Belgium after hunting wild boars. Vlaams Diergeneeskd Tijdschr. 2009;78:194–5. Google Scholar
    25. Capua I, Fico R, Banks M, Tamba M, Calzetta G. Isolation and characterisation of an Aujeszky's disease virus naturally infecting a wild boar (Sus scrofa). Vet Microbiol. 1997;55:141–6. View ArticlePubMedGoogle Scholar
    26. Schöniger S, Klose K, Werner H, Schwarz B-A, Müller T, Schoon H-A. Nonsuppurative encephalitis in a Dog. Vet Path. 2012;49:731–4. View ArticleGoogle Scholar
    27. Verpoest S, Cay AB, Bertrand O, Saulmont M, De Regge N. Isolation and characterization of pseudorabies virus from a wolf (Canis lupus) from Belgium. Eur J Wildl Res. 2014;60:149–53. View ArticleGoogle Scholar
    28. Zanin E, Capua I, Casaccia C, Zuin A, Moresco A. Isolation and characterization of Aujeszky's disease virus in captive brown bears from Italy. J Wildl Dis. 1997;33:632–4. View ArticlePubMedGoogle Scholar
    29. Glass C, McLean R, Katz J, Maehr D, Cropp C, Kirk L, et al. Isolation of pseudorabies (Aujeszky's disease) virus from a Florida panther. J Wildl Dis. 1994;30:180–4. View ArticlePubMedGoogle Scholar
    30. Wu N, Abril C, Hinič V, Brodard I, Thür B, Fattebert J, et al. Free-ranging wild boar: a disease threat to domestic pigs in Switzerland? J Wildl Dis. 2011;47:868–79. View ArticlePubMedGoogle Scholar
    31. Köppel C, Knopf L, Ryser MP, Miserez R, Thür B, Stärk KDC. Serosurveillance for selected infectious disease agents in wild boars (Sus scrofa) and outdoor pigs in Switzerland. Eur J Wildl Res. 2007;53:212–20. View ArticleGoogle Scholar
    32. APHAEA Project. http://www.aphaea.org . Accessed 31 Mar 2015.
    33. Surveillance of infectious diseases in animals and humans in Sweden 2013. http://www.sva.se/globalassets/redesign2011/pdf/om_sva/publikationer/surveillance2013_w.pdf . Accessed 31 Mar 2015.
    34. Ruiz-Fons F, Vicente J, Vidal D, Höfle U, Villanúa D, Gauss C, et al. Seroprevalence of six reproductive pathogens in European wild boar (Sus scrofa) from Spain: The effect on wild boar female reproductive performance. Theriogenology. 2006;65:731–43. View ArticlePubMedGoogle Scholar
    35. Ruiz-Fons F, Vidal D, Hofle U, Vicente J, Gortázar C. Aujeszky's disease virus infection patterns in European wild boar. Vet Microbiol. 2007;120:241–50. View ArticlePubMedGoogle Scholar
    36. Vicente J, León-Vizcaíno L, Gortázar C, Cubero MJ, González M, Martín-Atance P. Antibodies to selected viral and bacterial pathogens in European wild boars from southcentral Spain. J Wildl Dis. 2002;38:649–52. View ArticlePubMedGoogle Scholar
    37. Vicente J, Ruiz-Fons F, Vidal D, Höfle U, Acevedo P, Villanúa D, et al. Serosurvey of Aujeszky's disease virus infection in European wild boar in Spain. Vet Rec. 2005;156:408–12. View ArticlePubMedGoogle Scholar
    38. Closa-Sebastia F, Casas-Diaz E, Cuenca R, Lavin S, Mentaberre G, Marco I. Antibodies to selected pathogens in wild boar (Sus scrofa) from Catalonia (NE Spain). Eur J Wildl Res. 2011;57:977–81. View ArticleGoogle Scholar
    39. Cano-Manuel FJ, López-Olvera J, Fandos P, Soriguer RC, Pérez JM, Granados JE. Long-term monitoring of ten selected pathogens in wild boar (Sus scrofa) in Sierra Nevada National Park, southern Spain. Vet Microbiol. 2014 Google Scholar
    40. Lari A, Lorenzi D, Nigrelli D, Brocchi E, Faccini S, Poli A. Pseudorabies virus in European wild boar from central Italy. J Wildl Dis. 2006;42:319–24. View ArticlePubMedGoogle Scholar
    41. Montagnaro S, Sasso S, De Martino L, Longo M, Iovane V, Ghiurmino G, et al. Prevalence of antibodies to selected viral and bacterial pathogens in wild boar (Sus scrofa) in Campania region, Italy. J Wildl Dis. 2010;46:316–9. View ArticlePubMedGoogle Scholar
    42. Zupancic Z, Jukic B, Lojkic M, Cac Z, Jemersic L, Staresina V. Prevalence of antibodies to classical swine fever, Aujeszky's disease, porcine reproductive and respiratory syndrome, and bovine viral diarrhoea viruses in wild boars in Croatia. J Vet Med Ser B. 2002;49:253–6. View ArticleGoogle Scholar
    43. Roić B, Čajavec S, Tončić J, Madić J, Lipej Z, Jemeršić L, et al. Prevalence of antibodies to porcine parvovirus in wild boars (Sus scrofa) in Croatia. J Wildl Dis. 2005;41:796–9. View ArticlePubMedGoogle Scholar
    44. Vuta V, Barboi G, Olvedi I, Nicolae S, Leau S, Zamfir L, et al. The presence of antibodies to Aujeszky's Disease, Bovine Viral Diarrhoea and Porcine Reproductive and Respiratory Syndrome in wild boars. Preliminary data. Rev Romana Med Vet. 2009;19:75–81. Google Scholar
    45. Vengust G, Valencak Z, Bidovec A. A serological survey of selected pathogens in wild boar in Slovenia. J Vet Med Ser B-Infect Dis Vet Public Health. 2006;53:24–7. View ArticleGoogle Scholar
    46. Vengust G, Valencak Z, Bidovec A. Presence of antibodies against Aujeszky's disease virus in wild boar (Sus scrofa) in Slovenia. J Wildl Dis. 2005;41:800–2. View ArticlePubMedGoogle Scholar
    47. Steinrigl A, Revilla-Fernández S, Kolodziejek J, Wodak E, Bagó Z, Nowotny N, et al. Detection and molecular characterization of Suid herpesvirus type 1 in Austrian wild boar and hunting dogs. Vet Microbiol. 2012;157:276–84. View ArticlePubMedGoogle Scholar
    48. Sedlak K, Bartova E, Machova J. Antibodies to selected viral disease agents in wild boars from the Czech Republic. J Wildl Dis. 2008;44:777–80. View ArticlePubMedGoogle Scholar
    49. Kaden V, Lange E, Hänel A, Hlinak A, Mewes L, Hergarten G, et al. Retrospective serological survey on selected viral pathogens in wild boar populations in Germany. Eur J Wildl Res. 2009;55:153–9. View ArticleGoogle Scholar
    50. Leuenberger R, Boujon P, Thür B, Miserez R, Garin-Bastuji B, Rüfenacht J, et al. Prevalence of classical swine fever, Aujeszky's disease and brucellosis in a population of wild boar in Switzerland. Vet Rec. 2007;160:362–8. View ArticlePubMedGoogle Scholar
    51. Dekkers L, Elbers A. Serosurveillance of notifiable veterinary diseases in wild boar in the Netherlands. Tijdschr Diergeneeskd. 2000;125:2–4. PubMedGoogle Scholar
    52. Elbers A, Dekkers L, Spek G, Steinbusch L, van Exsel A. Sero-monitoring of notifiable diseases in wild boar in the Netherlands 1999-2001. Tijdschr Diergeneeskd. 2001;126:779–81. PubMedGoogle Scholar
    53. Elbers A, Dekkers L, Van Der Giessen J. Sero-surveillance of wild boar in the Netherlands, 1996-1999. OIE Rev Sci Tech. 2000;19:848–54. Google Scholar
    54. Verordnung über die Jagd und den Schutz wildlebender Säugetiere und Vögel. http://www.admin.ch/opc/de/classified-compilation/19880042/201503010000/922.01.pdf . Accessed 31 Mar 2015.
    55. Surveillance of infectious diseases in animals and humans in Sweden 2012. http://www.sva.se/globalassets/redesign2011/pdf/om_sva/publikationer/surveillance2012.pdf . Accessed 31 Mar 2015.
    56. Surveillance of infectious diseases in animals and humans in Sweden 2011. http://www.sva.se/globalassets/redesign2011/pdf/om_sva/publikationer/surveillance2011.pdf . Accessed 31 Mar 2015.
    57. Surveillance of zoonotic and other animal disease agents in Sweden 2010. http://www.sva.se/globalassets/redesign2011/pdf/om_sva/publikationer/1/zoonosrapport_2010_webb.pdf . Accessed 31 Mar 2015.
    58. Surveillance of zoonotic and other animal disease agents in Sweden 2009. http://www.sva.se/globalassets/redesign2011/pdf/om_sva/publikationer/trycksaker/1/surveillance2009.pdf . Accessed 31 Mar 2015.
    59. Albina E, Mesplede A, Chenut G, Le Potier M, Bourbao G, Le Gal S, et al. A serological survey on classical swine fever (CSF), Aujeszky’s disease (AD) and porcine reproductive and respiratory syndrome (PRRS) virus infections in French wild boars from 1991 to 1998. Vet Microbiol. 2000;77:43–57. View ArticlePubMedGoogle Scholar
    60. Rossi S, Hars J, Garin-Bastuji B, Le Potier M, Boireau P, Aubry P, et al. Résultats de l’enquête nationale sérologique menée chez le sanglier sauvage (2000-2004). Bull Epid Santé Anim Alim. 2008;29:7. Google Scholar
    61. Payne A, Rossi S, Lacour SA, Vallée I, Garin-Bastuji B, Simon G, et al. Bilan sanitaire du sanglier vis-à-vis de la trichinellose, de la maladie d’Aujeszky, de la brucellose, de l’hépatite E et des virus influenza porcins en France. Bull Epidémiol Santé Anim Alim. 2011;44:2–8. Google Scholar
    62. Lutz W, Junghans D, Schmitz D, Müller T. A long-term survey of pseudorabies virus infections in European wild boar of western Germany. Z Jagdwiss. 2003;49:130–40. Google Scholar
    63. Sattler T, Sailer E, Wodak E, Schmoll F. Serological detection of emerging viral infections in wild boars from different hunting regions of Southern Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2011;40:27–32. Google Scholar
    64. Denzin N, Borgwardt J, Freuling C, Müller T. Spatio-temporal analysis of the progression of Aujeszky's disease virus infection in wild boar of Saxony-Anhalt, Germany. Geospat Health. 2013;8:203–13. View ArticlePubMedGoogle Scholar
    65. Czaplicki G, Dufey J, Saegerman C. Le sanglier Wallon est-il un réservoir potentiel du virus de la maladie d'Aujeszky pour les élevages porcins; Epidémiol Santé Anim. 2006;49:89–101. Google Scholar
    66. Bericht zur Überwachung von Tierseuchen und Zoonosen, Daten 2013. http://www.blv.admin.ch/themen/03605/04710/index.html?lang=de&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1acy4Zn4Z2qZpnO2Yuq2Z6gpJCGdoB7hGym162epYbg2c_JjKbNoKSn6A --. Accessed 31 Mar 2015.
    67. Ruiz-Fons F, Segales J, Gortazar C. A review of viral diseases of the European wild boar: effects of population dynamics and reservoir role. Vet J. 2008;176:158–69. View ArticlePubMedGoogle Scholar
    68. Knowles DP et al. Herpesvirales. In: MacLachlan N, James DEJ, editors. Fenner's Veterinary Virology. San Diego: Academic Press; 2011. p. 179–201. Google Scholar
    69. Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev. 2005;69:462–500. PubMed CentralView ArticlePubMedGoogle Scholar
    70. Freeman ML, Sheridan BS, Bonneau RH, Hendricks RL. Psychological stress compromises CD8+ T cell control of latent herpes simplex virus type 1 infections. J Immunol. 2007;179:322–8. PubMed CentralView ArticlePubMedGoogle Scholar
    71. Padgett DA, Sheridan JF, Dorne J, Berntson GG, Candelora J, Glaser R. Social stress and the reactivation of latent herpes simplex virus type 1. Proc Natl Acad Sci. 1998;95:7231–5. PubMed CentralView ArticlePubMedGoogle Scholar
    72. Cohen F, Kemeny ME, Kearney KA, Zegans LS, Neuhaus JM, Conant MA. Persistent stress as a predictor of genital herpes recurrence. Arch Intern Med. 1999;159:2430–6. View ArticlePubMedGoogle Scholar
    73. Romero CH, Meade P, Santagata J, Gillis K, Lollis G, Hahn EC, et al. Genital infection and transmission of pseudorabies virus in feral swine in Florida, USA. Vet Microbiol. 1997;55:131–9. View ArticlePubMedGoogle Scholar
    74. Tanaka S, Mannen K. Activation of latent pseudorabies virus infection in mice treated with acetylcholine. Exp anim. 2002;51:407–709. View ArticlePubMedGoogle Scholar
    75. Tanaka S, Mannen K. Effect of mild stress in mice leatently infected pseudorabies virus. Exp anim. 2003;52:383–6. View ArticlePubMedGoogle Scholar
    76. Romero CH, Meade PN, Shultz JE, Chung HY, Gibbs EP, Hahn EC, et al. Venereal transmission of pseudorabies viruses indigenous to feral swine. J Wildl Dis. 2001;37:289–96. View ArticlePubMedGoogle Scholar
    77. Beerli O, Blatter S, Boadella M, Schöning J, Schmitt S, Ryser-Degiorgis M-P. Towards harmonised procedures in wildlife epidemiological investigations: A serosurvey of infection with Mycobacterium bovis and closely related agents in wild boar (Sus scrofa) in Switzerland. Vet J. 2015;203:131–3. View ArticlePubMedGoogle Scholar
    78. Batista Linhares M, Belloy L, Origgi FC, Lechner I, Segner H, Ryser-Degiorgis M-P. Investigating the role of free-ranging wild boar (Sus scrofa) in the re-emergence of enzootic pneumonia in domestic pig herds: A pathological, prevalence and risk-factor study. PLoS One. 2015;10:3. View ArticleGoogle Scholar
    79. Schöning JM, Cerny N, Prohaska S, Wittenbrink MM, Smith NH, Bloemberg G, et al. Surveillance of bovine tuberculosis and risk estimation of a future reservoir formation in wildlife in Switzerland and Liechtenstein. PLoS One. 2013;8:e54253. PubMed CentralView ArticlePubMedGoogle Scholar
    80. Arenas-Montes A, García-Bocanegra I, Paniagua J, Franco JJ, Miró F, Fernández-Morente M, et al. Blood sampling by puncture in the cavernous sinus from hunted wild boar. Eur J Wildl Res. 2013;59:299–303. View ArticleGoogle Scholar
    81. Hebeisen C, Fattebert J, Baubet E, Fischer C. Estimating wild boar (Sus scrofa) abundance and density using capture–resights in Canton of Geneva, Switzerland. Eur J Wildl Res. 2008;54:391–401. View ArticleGoogle Scholar
    82. Verin R, Varuzza P, Mazzei M, Poli A. Serologic, molecular, and pathologic survey of pseudorabies virus infection in hunted wild boars (Sus scrofa) in Italy. J Wildl Dis. 2014;50:559–65. View ArticlePubMedGoogle Scholar

    Papers, Zotero, Reference Manager, RefWorks (.RIS)

    EndNote (.ENW)

    Mendeley, JabRef (.BIB)

    Metrics

    Share this article

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Share on Weibo
    • Share on Google Plus
    • Share on Reddit

    See updates

    Other Actions

    BMC Veterinary Research

    Contact us

    • Editorial email: bmcvetres@biomedcentral.com
    • Support email: info@biomedcentral.com

    Follow BMC :

    © 2018 BioMed Central Ltd unless otherwise stated. Part of Springer Nature.

    Комментариев нет:

    Отправить комментарий

    Related Posts Plugin for WordPress, Blogger...